UNCLASSIFIED AD 464312

DEFENSE DOCUMENTATION CENTER FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGIMIA

UNCLASSIFIED

MOIICE: Then goverwant or other drawings, apeciflcations or other date are used for any plurpose other than in connection with a definitely related goverment procurement operation, the U. s. Governant thereby incure no reaponability, nor any obligation whatsoever; and the fact that the Coverament may have formalated, furaished, or in ary way exppliod the eatd drauinge, epecificaticas, or other date is not to be regarded by inplication or otherwice as in any maner ilcensing the holder or any other person or corporation, or conveging any rifits or perniasion to manfecture, uee or sell any petented invention that may in axy may be related thereto.

Written by 8

Page No. 1I. GENKRAL DESGRIPIION
II. DBSGRIFTION OF UNITS 3
A. Thickness Mode Hydrophones and Cables. 3
B. Preanplifier and Q Step Calibration 6
C. Sequence Control Circuit 8
D. 1000 CPS Frequency Standard. 9
E. Power Supply 9
F. Ampex Tape Recorder Midel s3.lil 9
G. Sola Constant Voltage Iransformer, Model 30809 10
III. SEQUENCE OF OPERRATION. 10
IV. MANUAL OPRRATION 11
∇. REMOTE OPERATION 12
VI. DIAGRAMS, TABLES AND PHOTOGRAPHS ل
VII. PARTS IIST 27
VIII. APFENDICES (Component Instruction Books)
A. Iampda Corp. Model 28 Power Supply.
B. American Time Products, 1,000 C.P.S. Frequency Standard
C. Ampex Corp. Model S-314l Magnetic Tape Recorder
D. Ampex Corp. Model 381 Speedlock Equipment
B. Ampex Corp. Model 375 Precision 60 Cycle CapstanMotor Supply
F. Sagle Signal Corp. Multiflex Timer

Page No.
Figure 1. Block Diagram of Complete System. 15
Figure 2. Schematic Diagram of Premplifier. 16
Figure 3. Schematic Diagram of Control Circuit 17
Figure 4. Volume Mode Gauge Draning 18
Figure 5. Thickness Mode Gauge Drearing. 19
Figure 6. Pront View of Complete System(Fhotograph) 20
Figure 7. Front View of Control Chassis (Fhotograph). 21
Figure 8. Rear View of Control Chassis. (Fhotograph). 21
Figure 9. Thickness Mode Gauge..(Fhotograph) 22
Figure 10. Volume Mode Gauge (Fhotograph) 22
Figure 11. Table of Vs and CsVs 23
FIgure 12. Table of Gauge Characteristics 24
Figure 13. Graph of KA vs Temperature 25
Figure 14. Recorder Base Diagrams 26

I. General Description

The equipment is a two channel recorder, complete with piezoelectric blast gauges, signal cables, preaplifier, recording apparatus, orstep calibrator, and automatic sequence control for the quantitative recording of underwater blast pressures. It is composed of ${ }^{T}$ basic units:
(4) Hydrophones and cables,
(2) High input impedance preamplifier and Q-step calibrator,
(3) Regulated power supply;
(4) कequence control equipment,
(5) 1000 cycle/second tuning fork frequency standard,
(6) Magnetic tape recording apparatus, $0-5000$ cycles/second,
(l) 1000 volt-amp Sola Constant Voltage Transformer.

One channel is used to record the signal received from the blast gauge, and the other channel is used to record the output of the 1000 cycle/second tuning fork frequency standard as well as the 60 cycle "speed lock" signal used to control the play back speed. The pressure-time recording channel may be used to record blast pressures up to 3000 psi with a response flat within 3 db from 0.04 to 5000 cycles/second. The entire equipment is semiautomatic, requiring only two 24 volt direct current signal pulses for remote controlled operation. These timing signals are applied prior to the blast being recorded. One complete recording unit, serial No. l_{0} operates in the volume mode while two units, serial No. 2 and No. 3 use the thickness mode. The preamplifier units for the two modes differ only in the padding capacity used. If desired, the output of the preamplifier may be connected to an oscilloscope having a sweep period of 15 seconds and a d.c. amplifier, thus making possible visual observation of blast pressures.

The equipment includes playback units for both channels but does not incorporate means for playing back under the control of the speed-lock. Thus, for a rapid check on the operation of the entire recording operation, no supplementary equipment is required. If, however, accurate playback of data is desired, additional equipment including Playback Demodulator Model 381 is required. A 1000 V.A. Sola Constant Voltage transformer is supplied with each recorder to provide the necessary $\pm 1 \%$ voltage stabilization.

II. Description of Units

A. Thickness Mode Hydrophones and Cables

Three thickness mode barium titanate high sensitivity hydrophones Model XHI are supplied with recording units No. 2 and 3. with cable lengths of 250 and 1000 feet. In addition, one glass dumay is supplied with each. These gauges average $225 \mu \mathrm{c} / \mathrm{psi}$. The crystals of this underwater blast gauge is enclosed in a brass housing in such a manner as to permit the blast pressure to act on the crystal face through the $1 / 4^{\text {m }}$ thick brass diaphraga but prevents the pressure from being applied to the crystal sides (pressure relief) as shown in Figure 5. This utilizes the thickness modulus of barium titanate which has the largest modulus value and permits the highest output per unit area of the crystal.

To improve the dielectric temperature characteristics of pure barium titanate, additions of $3 \% \mathrm{PbTiO}_{3}$ or $5 \% \mathrm{CaTiO}_{3}$ have been made to the commercial grade BaTiO_{3} used in the manufacture of these elements. Each recorder has associated with it gauges of both materials as shown in Pigure 12. This table also lists the room temperature and $0^{\circ} \mathrm{C}$ gauge calibration, length of cable and serial number of associated recorder.

Each gauge has been individually calibrated up to 1800 pai in a quick release pressure chamber. Their respective coulomb sensitivities are shown in Figure 12 as well as capacity and other pertinent data. The gauge response is linear with pressure up to the maximum calibrating pressure of 1800 psi.

The overall dimensions of the thickness operated gauge is 1.5 inches diameter by 3 inches long, including the housing and $1 / 4^{\prime \prime}$ thick diaphragm of brass. See Figure 5 for the machine draning and Figure 9 for the photograph of the gauge afflxed to its cable. The cable is water sealed to the housing
by a compressed rubber sandwich (Wilson seal) and this inner chamber (end of cable-connection to high crystal lead) is potted with G.E. No. 227 cable joint compound for additional moisture protection. These gauges will withstand a hydrostatic water pressure of at least 1500 psi without leakage. The diaphragm seals the crystal cavity with a compressed o-ring located inside the bolt circle diameter.

The crystal cavity is 0.156 inch deep by 0.650 diameter for mounting the two piezoelectric BaTiO_{3} discs which are $0.066-0.070$ inches thick by 0.605 diameter. This cavity is sealed from the cable-end cavity by a small hermetic seal so that possible leakage at the cable will not damage the gauge proper. The bottom BaTiO_{3} crystal has a $1 / 8$ inch hole through its center to permit the high lead to pass through to the hermetic seal and the cable. The crystals are connected in parallel and generate a positive charge with positive pressure.

The difference between cavity depth and total crystal thickness is adjusted by addition of 0.004 inch lead foils which are placed as shown between diaphragm and crystal, crystal and crystal, and housing and crystal to provide good acoustic coupling and takemp due to dimensional errors when the brass diaphragm is screwed down tight placing the entire assembly under pressure by approximately 0.002 inch. The center foil and its short lead is the high lead. The other faces of the crystals are grounded to the housing (and diaphragm).

Precautions

(1) Do not subject the gauge to temperatures in excess of $60^{\circ} \mathrm{C}\left(140{ }^{\circ} \mathrm{F}\right)$.
(2) Take $1 / 4$ to $1 / 2$ turn on cable seal before water submersion. (If seal feels firm, do not tighten further as excessive pressure can carse rubber gasket to damage or cut through cable.
(3) Diaphragm screws need no further tightening.
(4) Return 211 gauges to Horizons Incorporated for repair.

Volume Mode Hydrophones.

Three volume mode bariun titanate, high sensitivity hydrophones are supplied for use with recorder No.l (see Figure 10). A similarly constructed glass dummy is also supplied. These gauges average $200 \mu \mathrm{c} / \mathrm{psi}$.

There are four polarized crystals 0.750 diameter by 0.100 inches thick connected in parallel in this gauge. Figure 4 shows the method of construction. The four crystal discs are separated by three brass discs $3 / 4$ inch diameter and 0.050 inches thick for providing connections to the crystal faces. The bank of brass and BaTiO_{3} discs are glued together under pressure with Duco cement into a compact stack after the parallel connections have been soldered into the 0.030 diameter lead holes provided in the edge of the brass discs. The fired silver outside electrodes of the lst and 4th crystal are at ground potential and have the lead wires soldered on directly. The stack height is approximately 0.55 inches.

The assembled stack is soldered to the cable and the entire assembly dipped in an epoxy\% resin for a distance of $11 / 2^{n}$ down the cable. This provides a waterproof protective covering allowing no pressure relief surfaces, thus utilizing the volume piezoelectric mode of BaTiO_{3}. A layer of airm drying silver paint is applied to this first coat for electrostatic shielding and is connected to ground by filing away the first coat near a ground wire so the paint makes contact. A second plastic coat is applied over the silver. This plastic sets at room temperature to form a flrm resilient coatinge

For reasons discussed in the previous section these BaTiOs crystals are also made with $3 \% \mathrm{FbTiO}_{3}$ or $5 \% \mathrm{CaTiO}_{3}$ additions. See Figures 12 and 13 for * Araldite AN-101 Ciba Company, Inc., N. I., N. I.

further characteristics.

Each gauge has been individually calibrated as above at room temperature and is essentially linear up to macimum calibrating pressure of 1800 psi. The gauge will operate satisfactorily at hydrostatic pressure of 2500 psi or greater.

Precautions

(1) Do not subject the gauge to temperatures in excess of $60^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$)
(a) Should the gauge be accidentally dopolarized due to excess heat, it can be repolarized at room temperature by applying 3500 volts for 12 hours. Positive voltage is applied to the high lead.

Figure 13 shows the variation of KA with temperature for both the thickness mode and volume mode gauges with both lead and calcium titanate additions.

B. Preamplifier and Q Step Calibration

The preamplifier unit is a split cathode resistor cathode follower having an input impedance of the order of 300 megohms and accepting a 50 volt input signal without overload. The gain of the preamplifier is adjustable to any of six values, $1 / 1,1 / 2,1 / 4,1 / 6,1 / 8$, and $1 / 10$ of full out put depending upon the expected maximum blast pressure. Simultaneously the magnitudc of the calibrating voltage is varied as the reciprocal of the above ratios, so that the magnetic recorder itself always receives a constant calibration voltage $\nabla c_{\text {, }}$ regardless of the pressure setting.

The plate current of the preamplifier is indicated on the $0-5$ milliampere panel meter. The Q-step calibration circuit is composed of resistors R9 through R15, capacitors $C 3$ through C6 and relay RY5. With the relay doenergized the calibrating capacitor $C 3$ ($0.02 \mu \mathrm{fd}$) is placed across the line from the blast gauge and makes up a part of the $0.047 \mu f d$ total capacitance
across the input circuit. To calibrate the circuit the relay is energized, thus shorting the line to ground and charging the calibration capacitor,.c3 to the predetermined voltage appearing across R9. The relay is then de-energized removing the short on the line and again connecting the capacitor across the line. A step voltage VC is thus applied to the preamplifier. The height of this pulse is to be used in calibration. The total RC of the input circuit determines the exponential rate of decay.

Let
Vc = calibration voltage (input to magnetic recorder)
Vs $=$ voltage to which Cs is charged (See Table I)
$\mathrm{Cs}=$ calibrating capacity $0.02 \mu \mathrm{fd} \pm 1 \%$
Cc = gauge + cable capacity
Co = padding capacity
Ct $=$ total capacity across preamplifier input, $0.047 \mu \mathrm{fd}$.
(1) $\mathrm{Ct}=\mathrm{Cc}+\mathrm{Co}+\mathrm{Cs}=0.047 \mu \mathrm{fd}$
(2) $\mathrm{Vc}=(\mathrm{Cc}+\mathrm{CO}+\mathrm{Cs})=\mathrm{VsCs}$
(3) $\mathrm{Vc}-\frac{\mathrm{VaCs}}{\mathrm{Cc}+\mathrm{Co}+\mathrm{Cs}}=\frac{0.02 \times 1.25}{0.047}=0.532$ volts into preamplifier
(4) $\quad \nabla p=\frac{(K A) P}{C c+C O+C s}$
(5) $\frac{\nabla p}{\nabla c}=\frac{(\mathrm{KA}) P}{\mathrm{Cs} \nabla \mathrm{B}}$
(6) $P=\frac{V p(C s V s)}{V C(K A)} \quad$ obtained from 3) and 4)

Hote: $K A=$ gauge constant (me/pai)
$\mathrm{P}=$ pressure in poi
Vp = voltage produced by P
Thus, it is seen that the determination of the blast pressure is
independent of the gain of the recording system. It is only necessary to ratio the heights, ∇p and $V c$, of the final recorded data. The pressure reading is also independent of variation of the time constant of the circuits except as it affects the low frequency response.

Two time constants associated with the preamplifier stage are of importance in that they affect the low frequency response of the stage. The input impedance Rl of the circuit and the capacitors $\mathrm{Cy}, \mathrm{Cc}, \mathrm{Co}$ and the $0.25 \mu \mathrm{fd}$ coupling capacitor have a time constant RiC of $\left(\sim 300 \times 10^{6}\right)\left(0.0395 \times 10^{-6}\right) \approx$ 12 seconds.

The output coupling capacitor ($10 \mu \mathrm{fd}$) and the 1 megohm input impedance of the Ampex magnetic recorder have a time constant of 10 seconds (10×10^{-6}) (1×10^{6}). The preamplifier output is down 3 db at 0,03 cycles per second and is essentially flat to 5000. cycles per second.

The padding capacitors CL_{4} through 06 (Co in preceding equations) are used to bring the total capacity across the line to $0.047 \mu \mathrm{fd}$. CL_{4} and 55 are switched in when the 250 foot spare cable is used. Capacitor 06 appears in units No. 2 and 3 only and makes the total capacity of the compression mode units the same as that of the volume mode units. Capacitor Cl blocks the direct voltage on the grid of the premplifier tube from the cable. Capacitor C2 blocks the direct cathode voltage from the recorder input which responds to direct current.

C. Sequence Control Circuit

This circuit controls the timing sequence of the entire remote controlled recording of blast pressures. It is triggered by two incoming 24 volt direct current signals prior to the blast. The heart of the unit is an Bagle Signal Corp., Multiflex Timer which programs the associatod relays for
warm-up, recorder motor starting, recording, calibration before and after blast, and final power shut off.

Certain precautionary features have been designed into the control circuit. For example, if the 115 volt power should fail momentarily the sequence operation will continue from the point of power failure and not reset to the original condition. Also, if any subsequent 24 volt direct current signal after the first two will have no effect on the sequence of operation. Thus, if at the time of the blast or later a false signal should arrive it will have no effect on the operation of the unit. It should be noted that the center section of the front panel is removable for servicing.
D. 1000 GPS Frequency Standard

The 1000 cycle/second tuning fork frequency standard, manufactured by American Time Products, Inc., is used as a time standard, its output being recorded on channel 2 of the Ampex tape recorder. The output of the standard has been adjusted to approximately 06 vilt R.M.S. and should require no adjustment. The temperature coefficient of frequency is one part per million/degree C. See appendix B for manufacturer's instruction book on this unit.

E. Power Supply

A Lambda Corporation Model 28 unit is the power supply in rack A for the preamplifier, calibration circuit, and 1000 cycle frequency standard. Its output has been adjusted to 200 volts $\pm 1 \%$ to supply plate voltage and precision voltage Vs for the calibration circuit. If readjustment becomes necessary the volt-meter should be adjusted $t \sim 198$ volts for Unit No. 1, 200 volts for Unit No. 2, and 202 volts for Unit No. 3. Appendix A is the instruction book supplied by the manufacturer on this power supply.
. F. Ampex Tape Recorder = Model 33141
The Amex 2 channel gaconeticotanafgcord fith playback has a response
which is flat from direct current to 5000 cycles per second within $\boldsymbol{* 1}-3 \mathrm{db}$. A peak input of loll volts is the maximum allowable without overloading the recorder. See Appendices C, D, and \mathbb{E} for instruction books covering all components of the recorder.

G. Sola Constant Voltage Transformer, Model 30809

A 1000 V.A. voltage regulating transformer is supplied with each recorder to provide the necessary $\pm 1 \%$ regulation.
III. Sequence of Operation
A. The first 24 volt direct current signal arrives at a minimum of minus seven minutes to allow all circuits to stabilize.
(1) Relay RYI, the 24 volt starting relay is energized for the duration of the signal which must be less than five seconds.
(2) Relay RYI energizes lock-in relay RY2 which applies 115 volts to the power supply, recorder electronic parts, Hayden time delay relay, and to the clutch coil of the multiflex timer thus resetting it.
(3) After a delay of 5 seconds relay RY4 completes the circuit to lock in relay RY3 readying it for the second 24 volt control signal. The clutch coil was energized only for the duration of the first signal.
B. The second 24 volt direct current signal arrives at minus two minutes.
(1) RYI is again energized applying power to both lock-in relays RY2 and RY3.
(2) Relay RY2 is already locked in but RY3 now closes applying power to the multiflex timer motor and the automatic operation begins.
C. Multiflex Operation
(1) Contacts 1A - 1B closed when the clutch coil was de-energized (10).
(2) Contacts $2 \mathrm{~A}-2 \mathrm{~B}$ close momentarily, starting the Ampex recorder motors by energizing the "start" circuit.*
(3) Contacts 3A-3B close momentarily, energizing the "record" circuit. * The recorder can still be operated manually with its "start" and "record" buttons.
(4) Contacts $4 A-4 B$ close, energizing relay RY5, thus charging the calibration capacitor and shorting the input of the preamplifier to ground.
(5) Contacts $4 A-4 B$ open removing the short to ground and applying the calibration voltage to the preamplifier.
(6) Ampex recorder operates for 13 minutes.
(7) Contacts 5A-5B close. (Repeat d)
(8) Contacts 5A-5B open. (Repeat e)
(9) Contacts $2 \mathrm{~A}-2 \mathrm{~B}$ open, stopping the recorder motor.
(10) Contacts $3 A-3 B$ open.
(11) Contacts 6A-6B close, energizing the unlatching coils and opening RY2 and RY3, removing all 115 volt power.

IV. Manual Operation

(1) Connect the power cord to a 115 volt, 60 cycle power source and throw the main power switch S3. The pilot lamp Ll will light.
(2) Set the preamplifier sensitivity control to a value above the maximum pressure expected on that channel. Approximately 10% above maximum scale value can be tolerated on the recorder before overload takes place.
(3) Press the manual start button $S l$ once. Power will be applied to all circuits requiring preheating and to pilot lamp 12. The manual start button must be depressed for a period shorter than 5 seconds. A momentary contact is preferred. The $0-5$ milliampere meter should read approximately 2.5 .
(4) After a delay of at least 5 minutes, press the manual start button a second time. Power is now applied to the sequence timer which performs the following operations automatically.
(a) Starts the recorder motor.
(b) Begins the recording period.
(c) Calibrates the equipment (through to the magnetic tape).
(d) Provides an adjustable recording time.
(e) Recalibrates the equipment.
(f) Shuts off the equipment.

(5) At any time while the equipment is on, the reset button may be depressed causing the timer to reset and the entire equipment except lamp II to be shut off.

If a check on the operation of the control unit onif is desired and no recording is contemplated, the 5-mimite delsy may be omitted.

V. Remote Operation

(1) Connect the power cord to a 115 volt, 60 cycle power source and throw the main power switch 33. Pilot lamp il will light.
(2) Set the preamplifler stage sensitivity control to a value above the maximum pressure expected on that channel. Approximately 10% above maximum scale value can be tolerated on the recorder before overload takes place.
(3) Check the value of calibrating voltage (200 volts) and preamplifier current (2.5 ma) by pressing manual start button. Push reset button to remove voltage from filsments.
(4) The operator may now leave the equipment as no further local adjustments are necessary.
(5) A 24 volt direct current signal applied to the control signal connector on the panel will cause power to be applied to all circuits requiring preheating. The duration of the 24 volt signal must be shorter than 5 seconds and a momentary pulse is preferred. (This signal should be applied at "minus seven minutes" or more for adequate warmeup).
(6) After a delay of not less than 5 minutes, the second 24 volt signal may be applied. The length of this signal is not critical nor will further pulses due to any cause have any offect on the equipment. This signal should be applied at "minus two minutes" to allow time for calibration.

Power is now applied to the sequence timer which performs the following operations automatically:
a. Starts the recorder motor.
b. Begins the recording period.
c. Calibrates the equipment.
d. Provides an adjustable recording time.
e. Recalibrates the equipment.
f. Shuts off the equipment.

HORIZONS INCORPORATED
Cleveland, Ohio
March 5, 1953
em

- -

PART VI. DIAORAMS, TABLES AND PHOTOGRAPHS

$$
-15-
$$

Figure 1. Block Diagram of Complete System

Figure 2. Schematic Diagram of Preamplifier honizoms imeorporatil
-17-

Figure 3. Schematic Diagram of Control Circuit
honizons meorporatio

Figure 4. Volume Mode Gauge Drawing
-19-

Figure 6. Front View of Complete System

Figure 7. Front View of Control Chassis

Figure 9. Thickness Mode Gauge

Figure 10. Volume Mode Gauge
-23-

Figure 11

FRESSURE RANGE SETTING	Vs	CsVs
	1.25	0.025×10^{-6}
600	2.5	0.05
1200	5.0	0.10
1800	7.5	0.15
2400	10.0	0.20
3000	12.5	0.25

		F2L- GUAUGE 12	RISTICS			
GAUGE NO. and COMPOSITION	USED WITH RECORDER SERIAL NO.	$\begin{aligned} & \text { ROOM T. } \\ & \text { GAUGE } \\ & \text { CAPACITY } \\ & \text { (No Cable) mif } \end{aligned}$	ROOM TEMP. CALIERATION $\mu \mathrm{c} / \mathrm{psi}$	0° CAIIB. $\mu \mathrm{c} / \mathrm{psi}$	MODULDS UTILIZED	cabig IENOTH FEES
$\begin{aligned} & \text { XHI }=7 \\ & \mathrm{BaTiO}_{3}+3 \% \mathrm{FbTiO}_{3} \end{aligned}$	2	2520	215.	308	Thickness	1000
$\begin{aligned} & \text { XHI-8 } \\ & \text { BaTiO }_{3}+3 \% \mathrm{PbTlO}_{3} \end{aligned}$	2	2500	192	---	"	250
$\mathrm{xHl}_{\mathrm{BaTiO}_{3}+5 \% \mathrm{CaTiO}_{3}}$	2	2150	216	-	"	250
$\begin{aligned} & \mathrm{xH}-10 \\ & \mathrm{BaTiO}_{2}+5 \% \mathrm{CaTiO}_{3} \end{aligned}$	3	2150	215	272.	"	1000
$\mathrm{BaTiO}_{3}+5 \% \mathrm{CaTiO}_{3}$	3	2020	192	---	*	250
$\begin{aligned} & \mathrm{XHI}-9 \\ & \mathrm{BaTiO}_{3}+3 \% \mathrm{PbTiO}_{3} \end{aligned}$	3	2650	225	---	n	250
XHI-13 Glass dummy	2	----	----	----	----	210
$\begin{aligned} & \mathrm{xHI}_{\text {al }} \mathrm{I}_{4} \\ & \text { Glass dummy } \end{aligned}$	3	----	----	----	----	250
$\begin{aligned} & V-1 \\ & \mathrm{BaTiO}_{3}+5 \% \mathrm{CaTiO}_{3} \end{aligned}$	1	4000	264	200	Volume	1000
$\begin{aligned} & \nabla-{ }^{2} \\ & \mathrm{BaTiO}_{3}+3 \% \mathrm{FOTHO}_{3} \end{aligned}$	1	5500	287	---	Volume	1000
$\begin{aligned} & V-3 \\ & \mathrm{BaHIO}_{3}+3 \% \mathrm{FDTiO}_{3} \end{aligned}$	2	4980	231.	300	Volume	250
$\begin{aligned} & \nabla-5 \\ & \text { alass dumuy } \end{aligned}$	1	----	----	----	Volume	250

DIMENSIONS \pm 名 INCH

RECORDER BASE DIAGRAMS

FRONT

Recorder

VII -PARTS LTST

$$
\stackrel{-28-}{\text { PARTS LIST (Continued) }}
$$

MA Meter, 0-5 milliamperes, D. C. Type HS3 6
Sll Rotary Switch, Type 1760 7
S2 Push button switch, Type 2001 7
33 Push button aritch, " 20015 7
Multiflex Timer 8
Sola Constant Voltage Transformer Type No. 30809 9
Lamps, Type 6 watt

1. Continental Carbon Co.
2. John Fast
3. Industrial Condenser Corp.
4. Allied Control Co.
5. Hayden Mfg. Co.
6. Marion Electrical Instimment Co., Stark St. Gate, Manchester, N. H.
7. Mallory
8. Eagle Signal Corp.
9. Sola Electric Co.

PART VIII APPENDIGES (Component Inetruction Books)

APPENDIX A
LAMBDA MODEL 28 REGULATED PONER SUPPLY INSTRUCTIONS

C

C
Model No.
Serial No.

INSTRUCTION MANUAL for

I. General Description

1. General Description

The power supplies described herein are designed for use in industry, laboratory, radio scation and school to supply power to electroaic and ocher equipment. The DC output voltage is electronically regulated and is practically independent of external load (within limits) and normal line voluge fluctuations, and is also substantially free from hum and noise. Quality components, careful construction and conservative ratings are employed to insure long and dependable service.

To meet a variety of needs the power supplies are available in the following styles having identical electrical specifications:

Model 25 Compact and portable bench type. Functionally designed for maximum convehience and utility as a general purpose power supply.

Model 21 Compact unit for mounting in standard 19 inch racks. Designed for use with associated equipment in permanent and semipermanent installations.

2. Electrical Charactorietics of Modele 25, 28

inputh $105-125$ Volts AC, $50-60$ cycles, 120 watts.
DC Outpet: Continuóusly variable from 200 to 325 Volts DC regulated from 0 to 100 ma max. Either positive or negative side of supply may be grounded.
aC Onipets 6.3 Volts AC center-tapped at 3 A unregulated.
DC Voliorge Eoguartioa: Output constant to better than 1% for loads from zero to full load and line voltage variations from 105 to 125 volts.

Laboral Lapedemee: Appioximately 10 ohms.
Netee and lipple Outputs Less, than 10 millivolts rms for above ratings.
Tube Complomente SV4G rectifier, 2-6Y6G series control tubes, 6SJ7 DC amplifier, OA3/VR-75 comparison volage source.

3. Mechanical Specifications

Model 25 Cabinet Dimensions
Height: 8 inches
Width: 14 inches
Depth. 6 inches
Weight: 17 pounds
Finish: Grey ripple enamel.
Model 24 Standard 19" Rack Mounting
Panel Height: $51 / 4$ inches
Panel Width: 19 inches
Deprh behind Panel- $71 / 2$ inches
Weigtt. 17 pounds
Panel Finish: Black or gray (Munsell 4.5)
ripple enamel.

II. Operating Instructions Models 25, 28

MODEI 25

1. Model 25 Front Pamel Operating Controls and Terminals

a) The "AC ON" toggle switch is in the transformer primary circuit and controls power to the supply. The adjacent pilo light indicator having a green jewel is illuminated when the switch is in the ON position. The adjacent extractor type fuscholder marked "1.5A" is designed for a 1.5 ampere type 3AG fuse.
b) The "DC ON" toggle switch is in the transformer secondary center-tap circuit and permits the DC output to be turated off leaving the power supply in a "standby" condition. The adjacent pilor light indicator having a red jewel is illuminated when the switch is in the ON position. The adjacent fuseholder marked " 0.125 A " is designed for a 0.125 ampere type 3 AG fuse.
c) The "DC OUTPUT VOLTAGE" control is a wirewound rheostat which permits the $d-c$ output voltage to be set at any value between 200 and 325 volts d.c. The calibrated scale indicates the output voltage and is accurate to within 5%. For reasons of manufacturing and component tolerances it is necessary to leave a small portion at each end of the range of this control uncalibrated. When the control is set in these regions, the output voluge will be either slightly less than 200 voles or slightly greater than 325 volos d-c. The supply may be operated in this coodition bur loads drawing more than 70 ma are nor recommended if regularion and hum-level tatings are to be imaintained.
d) OUTPUT TERMINALS. The output terminals are sturdy, insulated "captive head" binding posts which can be used in a number of ways and are rugged enough to take a substantial amount of handling and abuse. They will accept "wrap-around" wire connections, "alligator" clips, banana plugs, spade lugs, and wire as large as \#12 AWG for permanent feed-through clamping. The d-c output terminal pair and the 6.3 VAC output terminal pair are each spaced on $3 / 4$ inch centers so that they will accept standard double banana plugs.

DC OUTPUT CONNECTIONS. The DC outpur connections marked "200-325 VDC" supply the regulated DC nutput volage. The positive connection is brought out through the red binding poas. The negative connection is broughe out through the black binding post. In most applications it is usual for the negative terminal to be at ground porential. In some cases it may be desired to place the positive rerminal at ground porential. Still other application may require that neither positive nor negative be at ground pocential. In such cases where either the positive or negative output connections are to be at ground potential, the appropriate terminal should be connected by means of a jumper wire to the binding post marked "GND." This latter post is connected to the power supply chassis.

AC OUTPUT CONNECTIONS. The AC output connections marked " 6.3 VAC $3 A$ " supply unsegulared vologe for vacuum tube heater circuits. The center-cap of this connection is brought out to the binding post marked "CT."

2. Placing Model 25 into Operation

a) Both "AC.ON" and "DC-ON" toggle switches should be in the OFF position.
b) Plug power cord into source of 115 volts AC, $50-60 \mathrm{cps}$.
a) Throw the left-hand toggle switch to the "AC-ON", position. The green pilor light should be illuminated. 6.3 Voles AC will be present at the terminals so marked. No output will be present at the DC output terminals. Allow the supply to warm up for a minute or so.
d) Set the "DC OUTPUT VOLTAGE" control to the desired voltage.
e) Throw the right-hand roggle switch to the "DC-ON" position. Regulated DC volage will be present at the terminals so marked. The power supply is now in full operating condition.
f) If it is desired to turn off only the d-c output, use the d-c toggle switch, leaving the a-c coggle switch in the ON position. In this manner, the supply will be in a standby condition and ready for instant use.

NOTE: Should the supply be rurned on by means of the "AC-ON" switch while the "DC-ON" switch is in the ON position, inherent protection is afforded by the circuit design to prevent the d-c output volcage from exceeding the voltage indicited by the "DC OUTPUTT VOLTAGE" control.

3. Model 25 Fuse Protection

a) INPUT CIRCUIT. The 1.5 ampere 3AG fuse in the input circuit is mounted on the front panel and is marked "1.5A". Its principal function is to offer prorection against overloads of the 6.3 VAC circuit or against short-circuits within the power supply itself.
b) D.C OUTPUT CIRCUIT. The 0.125A 3AG fuse in the dec output section is mounted on the front panel and is marked " $0.125 A^{\prime \prime}$. Its principle function is to protect the regulator section, rectifier, power transformer and filter choke from severe overload and short-circuit conditions in the external circuit. This fuse will "blow" at approximately 140 ma. The fuse will also protect an external milliammeter if one is used with the supply.

A special nore is in order with regard to the output circuit fuse. In the course of some laboratory experimental and developmennal procedures, a large uncharged capacitor, e.g. 4 to 10 mf , is shunted acrows the d-c output connections while full d-c voltage is present. Since the capacitor is uncharged a relatively high transient current (practically equivalent to a short circuit current) will be demanded from the power supply with the resultant "blowing" of the fuse. In such cases one of the following procedures is suggested:

1) Throw dec switch to OFF position. Connect external capacitor. Then throw $d-c$ switch to ON position. This procedure results in a marked reduction in the peak transient current due to the fact that the supply itself requires a fruction of a second to build up its own output volonge.

Or 2) Replace the 0.125 A fuse with a 0.125 A "slo-blo" type. The "slo-blow" fuses permit a severe Lemporary overlond without "blowing." They are relatively expensive and are not as commonly available as the fuses supplied with the unit.

Or 3) Replace the fuse with one of higher current-carrying capacity.

4. Model 25 Noise and Ripple Output

The noise and ripple output of the supply should be less than 10 millivolts rms at all voltages and load conditions within the specifications. This level will be present when the supply is regulating within the 1% specified. Measurement of this level may be made with an AC VTVM capable of reading 10 mv rms.

It is recommended that either the positive or negative terminal be connected by a jumper wire to the "GND" terminal for minimum ripple output.

5. Modal 25 Output lmpodance

The output impedance of the supply for d-c is approximately 10 ohms. A 2 mid oil-filled paper capacitor is in shunt with the d-c outpur circuit for two purposes: 1) to maintain this low value of output impedance at audio and at low and medium radio frequencies; 2) to provide a reservoir to supply transient currents of short duration having peak values greater than 100 ma .

An additional external capacitor shunted actoss the d-c output will provide even lower a-c output impedance and allow even higher peak transient currents to be drawn. For low impedance to high frequency RF currents, the common practice is to use a mica capacior shune close to the RF unit.

MODEL 28

1. Model 28 Operating Controls and Terminals

d) The a-c toggle switch, mounted on the front panel, is in the transformer primary circuit and controls power to the supply. The adjacent pilot light indicator having a red jewel is illuminated when the switch is in the ON position. The adjacent extractor type fuseholder marked " $1.5 \mathbf{A}$ " is designed for a 1.5 ampere rype 3 AG fuse.
b) The d-c outpur voltage control is a screw-slot adjusting porentiometer accessible at the rear of the unit adincent to the outpur cerminal strips. This control is uncalibrated and should be used in conjunction with an external volumeter to set the output volage at the desired value (within the specified limits of 200 to 325 VDC) For reasons of manufacturing and component tolerances it will be found.possible to obtain output volages of less than 200 volus and greater than 325 volos. When the concrol is set in the latter regions loeds drawing more than 70 ma are not recommended if regulation and hum level ratings are to be maincained.
c) The regulated DC output connections are brought out to a terminal strip marked "DC plus" and "DC minus" at the rear of the unit. In most applications it is usual for the negative terminal to be at ground pocential. In some cases it may be desired to place the positive terminal at ground porencial. Still other applications may require that neither positive nor negative be at ground porential. In such cases where either the positive or negative ourput connections are to be at ground pocential, the appropriate terminal should be connected by means of a jumper wire to the terminal marked with the ground symbol. This latter terminal is connected to the power supply chassis.
d) The AC outpur connections are brought out to a serminal strip marked " 6.3 VAC $3 A^{\prime \prime}$ "ac the rear of the unit. These terminals supply unregulated volage for vacuum tube henter circuis. The center-tap of this connection is brought out to the terminal marked "CT"

2. Placing Model 28 into Operation

a) Plug power cord into source of $115 \mathrm{VAC}, 50-60 \mathrm{cps}$.
b) Throw toggle switch to "AC-ON" position. The pilor light should be illuminated. Allow the supply to warm up for about minute or 50 .
c) Set output voltage with an external voltmeter. The power supply is now in full operating condition.

3. Model 28 Fuse Prolection

Because of the permanent or semi-permanent nature of installation and use of Model 28 only a primary fuse is provided. This fuse is of the 1.5 ampere $3 A G$ type and is mounted on the front panel.
4. Model 28 Noise and Ripple Output

See Model 25 "Noise and Ripple Output" notes above.
5. Model 28 Ouiput Impedance

See Model 25 "Output Impedance" notes above.

III. Theory of Operation

Referencr: Terman, Redio Engineering Handbook, P. 614.
The theory of operation of the series type electronically regulated power supply has been described in grear decail in the literarure. To review, reference is made to the simplified schematic diagram shown below:

semies type electromic voltage reculaton
This regulating system operates in such a way as to make the output voltage. Eo, substantially independent of the load comnected across Eo, or of the d-c vploage Ein. This circuit operaces as follows: Any fluctuation in output voltage, Eo, due to change in load, or Ein, produced by line volage variation, will vary the potential E1. Heace the grid-cathode porential of T2 will change, since the action of T3, a gas-filled voluge regulacor tube, is such chat a practically constant voltage drop, E3, is maintsined independent of current through T3. The change in grid-cachode pocential of T2 is amplified by T2 and affects E2, the grid-cathode pocential of T1 in such a manner as to produce a change in voltage drop, E6, through T1 that cends to compensate for the change in output voitage, Eo.

The steady state plate current through T2 determines E2 and therefore the voltage drop through T1. Hence the outpur voluage, Eo, (which the system actempts to maintain) is determined by the potential E1. Thus this output volage Eo is determined by the serting of porentiometer R2.

When the screen grid voltage of T2 is obtained from; a voltaze divider, R3 and R4 across the unregulated supply volage, Ein, additional compensation is obrained. Any fluctuation of Ein will vary the current through R4 and hence the screen-cathode porential, E4. This affects the voltage drop, E6, so as to compensate Eo for a change in Ein.

Since the output potential, Eo, cends to be independent of the load on the system, Eo acts as though it had a very low impedance source. If R4 is made a porentiometer and E4 is adjustable, it is possible to provide such compensation as to reduce the effective internal impedance of the regulator system to zero or even to a negative value, i. e., Eo will increase with an increase in load curtent. For maximum stability the 6SJ7 screen voltage porentiometer in the Model 25 and 28 regulated power supplies is set at the factory so that at an Eo of 270 voles there will be a voltage drop of 1 volt from no lond to full load. With this adjustment Eo will not vary more than 1 volt with a line voltage fluctuation of 105-125 volts.

The internal impedance of the regulaced supply is low from DC through audio frequencies and is function of the response of T1, T2, T3 and their associated circuits.

A capacitor, C2, is shunted across the output to maintain the supply impedance at a low value for higher frequencies, and to serve as a reservoir for high peak transient currents. Cl increases the response of the regulator system to hum volcage and serves to reduce the ripple content of Eo.

IV. Maintenance Models 25, 28

Under normal conditions no special maintenance of the Models 25 and 28 power supplies is required except for occasional tube replacement.

1. Models 25 and 28 Tube Roplacemont

The tubes are secured in their sockets by spring-type retaining clamps. The recrining clamps must be depressed into and held in a flattened position before removing tubes from their sockers.

Special attention is called to replacement of the 6SJ7 DC amplifier tube and the OA3/VR.75 voluge reference tube. Due to tube manufacturing rolerances, it may be necessary to check the operation of the supply when these nubes are changed if the powet supply specifications are to be mainained. Checking and recalibration procedures are outlined in demil in paragraphs 2 and 3 below.

2. Model 25 Operational Check and Recallbration Procedures

a) RAPID CHECK (see diagram). An approximate check of the power supply regulation and calibration may be made with a DC volumeter having a voluge range at least to 300 volts (usually a 0.500 VDC meter or preferably a multi-sange meter), a 0.100 ma DC milliameter (oprional), and a load resiscance capable of loading the supply to 100 . me and capable of dissipating the appropriate amount of heat, ce. g., 2500 ohms 25 wats at an output volmge of 250 VDC.

Allow the supply to warm up for a few minutes. Adjust the "DC OUTPUT VOLTAGE" control so that the volumerer rends 250 VDC. Connect the lond resistor. The milliameter should read 100 ma . While carefuly observing the voltmeter, alternately coanect and disconnect the load resistor. The volage under load should nor decrease more than approximately 2 volts from the noload voltage. It may be difficult to accuracely judge a 1 or 2 volt change but the meter needie should perceptibly move in the decreasing direction when the load is applied. If this condition is satisfied, the power supply regulation is proper.

If, under load, a decrease of more than 2 volts or a rise in voltage is nuticed, adjustment of the internal controls is necescary. Remove the dust cover. A tube and control location diagram will be found on the inside of the dust cover. The "Screen Vole Adj." screw-slot potentiometer will be found near the filter choke. Adjust this porentiomerer a little bit at a time and repeat the above regulation check each time until proper operation is obtained. Secure the potentiometer shaft in position with a drop of Duco or glypeal cement.

With the output voltmeter reading 250 volts, nove the setring of the "DC OUTPUT VOLTAGE" control. If it does nor read 250 volts, the following recalibration procedure is used.

The calibration of the "DC OUTPUT VOLTAGE" control should be made affer the regulation adjustment has been complewed. Turn the "DC OUTPUT VOLTAGE" knob to iss extreme clockwise position. The knob pointer should be opposite the radial line on the scale indicating the limit of physical rocation. Reset this knob if necessary. Turn the knob so that the pointer is set to the center
of the calibration doe at 250 volss. Adjust the "Range Ser" screw-slot fotentiometer (located near the power transformer) until the meter reads 250 VDC. Secure the porentiometer shaft with a drop of Duco or glypral cement.

b) PRECISE REGULATION CHECK (see diagram above). For precise check of the power supply regulation it is necessary to have a means of measuring volcage changes of the order of 1%. The ser-up suggested requires a suitable load to draw 100 ma from the supply; monitoring voltmeter (optional); constant potential source such as a set of 645 -volt "B" batteries (270 VDC) or a regulated power supply (set at 250 VDC); and a high impedance voltmeter. It is suggested that this latter voltmeter be of the vacuum tube type to prevent meter burnout.

Allow the supply to warm up for a few minutes. Set the power supply to about 3 volts higher than the constant potential source, as indicated by a reading of plus 3 volts on the DC VTVM. Proceed with the regulation and calibration check as outlined in paragraph (a) above, secting the regulation at 1 volt decrease from no load to full load at either 250 or 270 volts depending on which is used in the above checking procedure.
c) ADJUSTING FOR CLOSER REGULATION. It should be nored that the regulation of the supply may be adjusted to near yero. The same adjusing procedure may be used as ourlined in paragraph (b) above. When regulation near zero is desired and sec, it is recomanended chas the range of outpur voloage over which the supply is to be used be kepe small or better still the supply be used at the voluge at which the regulation adjustraent was made, if stable operation is to be ascured.

3. Model 28 Operational Check

The procedures oudined in parngraph 2 for Model 25 are in general applicable to the Model 28. The following differences should be noced:
a) The screen voltage adjustment potentiometer, marked
"SCREEN ADJ" is of the screw-slor adjusting type and is located near the SV4G rectifier tube.
b) The DC ousput voltage control poceatiometer will be found next to the output terminal strips. The range of this pocentiometer will be greater than the specified range of 200 to 325 VDC. It is recommended that the supply be used within the specified rase.
c) No range setting control is provided.

4. Mincellaneous Mafrionamee Notes Modols 25 and 24

a) A schematic diagram for Model 25 will be found on the inside surface of the chassis bottom plate.
b) A schematic diagram for Model 28 will be found on the inside surface of the top cover plate.
c) The pilot light indicator lamps on the froat panel are of the $6-8$ volt $\# 47$ bayonct type. They are accessible from the froat panel by merely unscrewing the pilot light assembly jewel.
d) The fuse holders are of the finger-grip extractor type, permitting easy replacement of the fuses from the front.

5. Voltage Table Modele 25, 28

The following voluges are typical with the power supply oper. ating with 115 VAC input, with an output of 250 VDC, and no load on the output. The meisurements may be made with a voltmeter having a sensitivity of 1000 ohms per volt excepe where indicated orherwise. Voltages are measured between the indicated tube-pin and the negative output terminal, except for measurement of tube heater voltages.

	5V40	0A3/VE.75		BYec (entrer)
1	-	-	0	(1)
2	535	0	77	250
3	-	-	77	530
4	425VAC	-	72	530
5	-	77	77	187 (b)
6	425VAC	-	80 (a)	187 (b)
7	-	-	77	250
8	535	一	187 (b)	250
$2 * 7$	5.0 VAC (c)	-	6.3VAC	6.3VAC

a) May vary from 50 to 125 voles
b) Measwred with 20,000 obms per volt meter
c) Measwred botweem pins 2 \& 8

Δ

LAMBDA ELECTRONICS CORP. 103-02 Northern Boulovard
 Corona Now York

APPENDIX B

AMERICAN TIME PRODUCTS, MODEL 20001-2S
HREQUENCY STANDARD
INSTRUCTIONS

: OPERATING

INSTRUCTIONS

AND SPECIFICATIONS

American Time Products Inc.
580 Fifth Avenue, New York 19, N. Y. Maker of the

Printed in U. S. A.

FREQUENCY STANDARDS

TYPE 2001-2 SERIES

DESCRIPTION — The 2001 series frequency standards provide sources of frequencies from 40 to 20,000 cycles at a high order of accuracy. These units are compact and deaigned in a way to permit integrating them into basic equipment.

The small size is made possible through the use of a new, improved, miniature tuning fork. The low heater and B current drains permit, in the majority of applica. tions, the use of the basic equipment power supply.

The fork itself is of bimetallic conatruction, making a close approach to a zero temperature coefficient possible. The drive and pickup aystem is electromagnetic. Driving force is applied to both tines, and pickup voltage is generated by motion of both tines. The magnetic assembly of coils and magnets for both the pickup and driv. ing coils is located between the two fork tines, along the dynamic center of the fork. This insures maintenance of balance of the tines ahould the pickup and driving magnets be of alightly different strengths.

The whole assembly is housed in a hermetically sealed and partially evacuated housing. The fork is thus immune to barometric or altitude changes and also protected againat adverse environmental conditions. The fork is shock mounted so that the whole unit does not require special mounting when used in mobile application.

The \mathbf{Q} of the forks alone is approximately $\mathbf{3 0 , 0 0 0}$. The working Q is in excess of 5,000 . Q checks are made on all forks to imure quality performance.

The electrical circuit is an amplifier consisting of one pentode followed by'a pentode connected as a triode. The high input impedance of the pentode input tube combined with negative feedback through a voltage sensitive clement maintains the fork amplitude and frequency conatant regardiess of aupply voltage variations, change of tubea, or tube ageing.

Each completed unit is aged and checked periodically
for proper performance prior to shipment. A phase control is provided for slight frequency adjustment.

CONSTRUCTION-The components and construction are in accordance with current government JAN specifications. (AN-e-19)

USES - Time keeping, facsimile syatems, time bases, high speed cameras, chronographa, astronomical drives, viscosimeters, geo-physical inatruments, fire control and navigation.

GENERAL SPECIFICATIONS

FREQUENCY - Any frequency as apecified including fractional numbers from 40 to $\mathbf{2 0 , 0 0 0}$ cycles.

ACCURACY - 1 part in 100,000 (.001\%).
CALIBRATION-The frequency is set within 1 part in $1,000,000$. A control is provided to adjust the frequency over a range of up to $\mathbf{1 0 0}$ parts in $\mathbf{1 , 0 0 0 , 0 0 0}$. A locking nut prevents unauthorized adjustments.

TEMPERATURE COEFFICIENT—Better than 1 part in $1,000,000$ per centigrade degree from 0 to 60 degrees C. The temperature coeficient is measured for each unit. Accuracies for an overall temperature range for JAN applications are available.

POWER SUPPLY - 6, 12 or 24 volts A.C. or D.C. (specify), 100 to 325 volts D.C. at 5 to 10 M.A. Specify voltage available in above range. B voltage coefficient is better than 1 part per million per 25 volts from 100 to 325 volts. Units requiring 28 volte only are available on special order. 110 volts A.C. operation available by using P unit.

OUTPUT-Approximately 5 volte at 250,000 ohms minimum, approximate sine wave. Wave shape distortion is of the order of 10%.

TYPE 2001-2-This consists of a fork and amplifier circuit. The frequencies available are normally from 200 to 3000 cycles in standard designa. Frequenciea above 3000 may be furnished on apecial order if the

application warranta. The type 2001.2 is furnished on a plate $33 / /^{\prime \prime}$ by $41 / 2^{\prime \prime}$ suitable for mounting in a hole in a main chassis or on top of a chassis by using two metal channels furnished. There are two 6AU6 tubes used in this type. Outputs at distortions of 2% are available on this unit on apecial order. Specify 2001-2S.

TYPE 2001-2L—The frequencies available from this unit are 40 to 200 cycles. This unit consists of a Type 2001.2 unit plus a frequency divider unit of the multivibrator type using one tube. The frequency divider unit is the same size as the fork unit. There are two 6AU6 and one 12AU7 tubes used in this type. Counter type dividers are available if multi-vibrators are unsuitable.

TYPE 2001-2D-Counter type frequency divider. In applications where failure of the primary signal frequency must reault in failure of output, the counter type divider is recommended. Four 12AT7, plus two 6AU6 tubea, are used.

The type 2001-2L and 2001-2D double unit is furnished with a channel mounting. The overall is 9 " $\times 33 / 4$ " and it can be mounted above or through a chascis.

TYPE 2001-2H-The frequencies available from this unit are 3,000 to $\mathbf{2 0 , 0 0 0}$ cycles. This unit consists of a Type 2001-2 unit plus a frequency multiplier unit using 2 tubes. The frequency multiplier unit is the same size as the fork unit. There are three 6AU6 and one 6J6 tubes used in this type. This double unit is furnished with a channel mounting similar to the 2001-2L above.
TYPE 2001-2M-This is a 2001-2 fork unit plus a 2 watt amplifier with an output of 2 watte at 100 to 150 volts (depending on load impedance) or 6 voltes at approximately 1.5 watts or a combination of both with total londing of 2 wetth. It requires a B voltage of 250 at 50 mon. The Type $2001-2 \mathrm{M}$ uses two 6AU6 tubes in the fork unit and one 6AQS in the amplifier unit. This unit may be used in conjunction with the 2L, 2D and 2 H units as well. Size of the amplifier unit only is $3314^{\prime \prime} \times 41 / 2^{\prime \prime}$.

TYPE 2001-2P-This is a power supply which can furnish heater and plate voltage for the 2001 typea listed above. A 6×4 tube is used. It operates on 115 volts, on frequenciea from $\mathbf{5 0}$ to $\mathbf{5 0 0}$. cyclet. Adding the
designation \mathbf{P} to the above numbers indicates that a power supply unit is wanted.
TYPE 2001-2R—This is an $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ black wrinkle standard rack panel with a shelf for mounting the above unita. Adding the designation R indicates that a rack mounting is required.

INSTALLATION - The standards can be mounted either on or through a surface. Mounting holes and cutouts are shown on drawing 2035. When mounting through the surface of a chassis or panel the side channels are removed. The unit should be mounted so that the fork is approximately vertical. The fork unit should be located away from strong AC or DC magnetic fields. Connect the unit to the associsted circuit. Shielded wiring for the output is not necessary except in the presence of very strong field.

OPERATION - The output frequency is present approximately 50 seconds after the power is applied to the unit. In applications requiring the presence of frequency immediately after a awitching operation, the unit should be left operating continuously and the output circuit switched.
FREQUENCY ADJUSTMENT-The unit, when shipped, is calibrated to within 1 part in a million of its nominal frequency. This calibration will normally re. main to within 10 parts in a million. However, if it departs appreciably from a known standard to a degree intolerable for the application, the frequency can be readjusted. The control for this adjustment is on top of the panel which mounts the fork. The range of this control is given for each individual unit on the teat sheet. Very approxi antely the change of rate is proportional to the range of the control as the amount of e rotation is to 300 degrees. For instance, if the range of the control is 100 parts in a million and a $\mathbf{1 0}$ part in * million decrease in frequency is desired, a firte approximation would be to turn the control clockwise perhaps one-half the indicated 30 degrees.
Parta per million as used above are more convenient in dealing with precise frequencies. Example, if a frequency of nominally $\mathbf{6 0}$ cycles is slow by 14 parts in a million, it has an actual frequency of $60-60$ (.000014) or 59.99916 cycles. This is an error of close to 1 second in 24 hourn.

APPENDIX C

AMPEX MODEL 331 II MAGNETIC TAFE RECORDER
INSTRUCTIONS

SPECIAL NOTE

Due to the higher than normal grid impedance of V201 it is necessary to compensate the input circuit to keep the frequency reaponse within spectfications to 5000 cycles. The circuit hes been compenanted at the factory so that one volt RMS input will give the proper deviation. Any change in the setting of the input potentiometer will change the frequency response characteristics. Therafore, the signal to the recorder should be adjusted to one volt RMS external to the recorder.

Should the setting of this control, R211, be altered for any reason, the setting may be re-established by following the alignment procedure as given in Section V of this book.

This mochine, expial matere 12 a appoial type recoudter

 interpemecting cables.

This Imatruotica Book is compoed of figrean and inetructicas
 pirine in the freat of the bookf follomitity the melel 306 data trumel. cad the rodal 403 coatrol channoi. The etaredard redol 382 apead iack
 aplifler and the ka189 control trook emarator.

The medel 307 Top Fiate is deairned for $35 \mathrm{~N}, 30^{m}$ and 60^{n} appede. Hownver, thete mebine abould be oppented at the 30 apoed oaly (opend

 A epocial deni track head cupenbly has bena lnoocporsited adth the upper (data) terote color codid rede

The zodel 306 Elootronto seophbly ueod on the uppore (data) treak
 cpilifiep. The operation and allqumat ase deoorb bed in the ceccud pertica of this mamalo.

 the 30 troh tape apeed. The signal to holee metio is better than 15 do beler operating lovel. sinoe tha moinl 103 is an auctio xpoordex, hidh fruquenay permphads is inompornted in the rocoud direuit as chom in
 chould be recordad 10 to 15 db belew aperating loval to avold tape anturnticie.
 buluaced. Thien impat impedancea are avalinble by ohragine tho Impat Itenafer suitela
yurepheae loval inpert armopped for 800 to 250 abme.
Buleding for a belpaced 11 m 300,000 obve.

The oparattom and aligmmat of the 103 ase docoribed in the sons porthen of this book.
 permer to tho tive Lleetrocaic cracais.

SECTION II
 INSTALLATION

1. Open packing case carefully and save it. In the event of possible ship. ping damage the case may be needed for return shipment.
2. Examine electronics chassis and see that any chassis that are shock mounted float freely on their rubber cushions.
3. If equipment is to be Rack mounted, install in the rack so that the head cables will reach the electronic unit without being extended in length. Do not leng then the head cables for any reason whatsoever, because increased cable capacity will cause undesirable resonance with the heads.
4. Install all cables as shown in Fig. 12.
5. Release capstan drive motor shipping lock. This is the spring catch which holds the motor away from the rubber-tired flywheel. The retaining ring should be broken off and the lock removed from the motor bracket. Do not make any adjustments on the drive system at this time. No adjustments need be made unless damage has occurred during shipping. NOTE: Whenever recorder is transported, be sure to lock motor, or capstan tire may be damaged beyond repair.
6. Connect power cord to $115 \mathrm{~V} ., 60$ cycles $A . C$. only.
7. The capstan speed should be checked with the stick-on stroboscope provided. Before checking, let drive unit runfor at least five minutes to warm up lubricant in the capstan assembly. If the lubricant is stiff, the additional drag will cause greater compression of the rubber tire and the capstan will therefore run slighty slow until warmed up. Place stroboscope on capstan shaft with sticky side down and view rotating shaft under 60 cycle light. If the speed is not correct the spokes will appear to rotate. Slight speed changes can be realized by change in capstan drive motor pressure. This adjustment is at spring D, Fig. 1 on the motor solenoid draw bar. If the adjustment is in the proper range, increasing pressure will sl ow the capstan, decreasing pressure will speed the capstan. Adjust for no rotation of the stroboscope spokes. (If drive motor pressure is too light, increasing pressure will speed the capstan. In this range the tire pressure is inadequate for stable operation, and the pressure should be increased until increase in pressure reduces capstan speed.)
8. Load the left hand reel holder with tape and thread as shown, in Fig. 5. Be sure the tape used has the oxide-coated side toward the rear of the machine; i. e., toward the head faces. Be sure to remove any adhesive that may have been used to seal the end. If this adhesive is not removed, the first layer may stick and cause the end to break off at the finish of rewind.
9. A reel hold-down or editing knob should be placed on each reel spindle. Editing knobs, catalog \#1917, are furnished with console and portable recorders, while hold-down knobs, catalog \#4402, are furnished with rack models.

The \#4402 reel hold-down knob works in the following manner. A removable pin in the bottom surface of the knob engages a corresponding hole in the turntable. A collet grips the turntable shaft when the top of the knob is rotated. Two spring loaded balls hold the reel to the turntable. A pin in the side of the knob drives the reel. The knob should be positioned on the NARTB reels so that the removable pin engages one of the turntable holes and approximately two thirds of the ball is exposed above the reel. The knob should not be pushed down all the way, but should stick up above the turntable. Once the knob is positioned correctly, the NARTB reels may be removed without removing the knobs. When using the knob with the small RMA reels, unscrew the removable pin. The knob is used only to prevent the reel from falling off the turntable, since three pins in the turntable drive and center the reel. Lock the knob to the shaft, avoiding excess pressure on the reel which could distort the reel flanges.

The machine is now ready for operation. When shipped as a Model 307, it is factory adjusted for speeds of 30 inches per second and 60 inches per second unless ordered for 15"-30" opration. Model 306 machines are shipped for 15"-30" operation and should be operated at the 30 inch speed only. NO FURTHER ALIGNMENT SHOULD BE NECESSARY.

OPERATION

B. Mechanical:

After connecting the electrical circuits as previously described, set the "fast start-slow start" switch located on the connector panel underneath the top plate to the desired type of start. For the 60 inch per second tape speed, "slow 8 tart" must be used. Turn on Power Switch, see Fig. 5. This turns on the amplifiers and control circuits. On some multi-track machines a Power Distribution Panel is provided to feed AC Power to the Power Supplies and Mechanical Assembly. The Power Panel Master Switch must be turned on, as well as the Mechanical Assembly Power Switch. Thread tape as indicated in Fig. 5. When set for "fast start", the capstan drive will start when the tape is threaded, as the tapeup tension arm operates a switch which shuts the motors off when the tape runs out.

Pushing the Start button will now start the tape moving according to the mode selected on the Play, Rewind, Fast Forward control. In the Play position the tape will be reproduced at the output terminals. Pushing the Record button will permit an input to the machine to be recorded on the tape with almost simultaneous playback of the new program. A $1 / 2$ second time interval should be observed between pressing the start button and pressing the record button to avoid switching transients magnetizing the record head. Pushing the Stop button will stop the machine and turn off the recording amplifier; therefore, one must always push the Start and Record buttons, in that order, to record. The mode selector switch allows transfer from Play ta Rewind or Fast Forward without pushing the Start button when switching. This helps greatly in editing. However, when going from Rewind to Play, the machine shuts off and the Start button must be used to restart the tape motion.

SECTION III

OFERATION

C. Speed Change:

The model 307 is shipped to the customer either as a 15 inch- 30 inch machine or as a 30 inch -60 inch machine, depending upon his preference. The Model 306 is shipped as a 15 inch-30 inch machine, and since the Model 306 electronic assembly is designed for 3.0 inch speed only, speed change is not required. In order to change from a $15 "-30^{\prime \prime}$ to a $30^{\prime \prime}-60^{\prime \prime}$ in the field, or vice versa, four items must be changed.

1. Addition or removal of capstan bushing.
2. Adjustment of capstan idler pressure.
3. Changing of "slow-fast" start switch to the proper position.
4. Equalization of the playback amplifier.

TO CONVERT FROM 15"-30" TO 30"-60"

1. Remove the Allen cap screw from the capstan shaft. Attach capstan bushing adaptor. FOLLOW INSTRUCTIONS AND PRECAUTIONS CAREFULLY, as capstan adaptor must be handled very carefully to maintain wownfree performance. In order to have no speed variations, the runout of the capatan must be extremely low. Therefore, the capstan adaptor is a very close, precision fit. It must be treated carefully and kept scrupulously clean.
(a) Make sure capstan shaft and the inside of the adaptor are clean.
(b) Place adaptor over the capstan.
(c) Push adaptor down gently, being careful to keep it in alignment. Because of the precision fit, the adaptor will not go over the capstan if it is the slightest bit cocked.
(d) When the adaptor has been started on and is in good alignment, as evidenced by lack of wobble when the capstan is rotated, give the adaptor a rap with the palm of the hand, and it will seat properly. DO NOT TRY TO DRIVE ADAPTOR ON IF DIFFICULTY IS EXPERIENCED. If the adaptor is properly aligned with the capstan, it will go on readily. In case of difficulty, a slight smear of lubrication on the capstan shaft will help.
(e) Secure adaptor in place with the $\mathbf{1 0 - 3 2}$ Allen screw and wrench proubded.

MODEL 306 \& 307 SECTION IL - Page 3
2. When changing from the small diameter capstan to the large one it is necessary to change the capstan idler pressure by the adjustment at point F in Fig. 1. Back off the adjusting nut until correct pressure is reached. One method for determining correct pressure is to feed a short length of tape into the capstan by hand while the machine is operating with the takeup tension arm secured in the running position. With the tape held motionless the pressure should be sufficient to physically deform or break the tape.
3. If the machine is to be operated at 60 inch per second change Switch S806 on Connector Panel underneath the top plate to the "slow start" position.
4. See Playback Equalization - SECTICN V - B, Page 4 for the reequalization procedure.

TO CONVERT FROM $30^{\prime \prime}-60^{\prime \prime}$ TO 15" $-30^{\prime \prime}$

1. Remove the Allen cap screw from the capstan bushing adaptor. In its place insert the capstan bushing extractor tool. Running this down with the wrench provided forces the capstan bushing adaptor off the capstan shaft. Wipe the capstan free of any lubrication. Insert the short Allen cap screw (found in the container with the extractor tool) in the capstan shaft. Replace the bushing, long cap screw, extractor tool and wrench in a safe place for future use.
2. When changing from the large diameter capstan to the small one it is necessary to change the capstan idler pressure by the adjustment at point F in Fig. 1. Tighten down the adjusting nut until the correct pressure is reached. One method for determining correct pressure is to feed a short length of tape into the capstan by hand while the machine is operating with the takeup tension arm secured in the running position. With the tape held motionless the pressure should be sufficient to physically deform or break the tape.
3. Change Switch $\mathbf{S 8 0 6}$ to the "fast start" position if fast start is desired.
4. See Playback Equalization-SECTION V - B, Page 4 for re-equalization procedure.
A. Mechanical Asscmblics:

The drive system employs three motors. Two induction motors with sole. noid operated brakes are used for takeup and rewind. These motors are shown in Fig. 7 and require no service attention! The torque of these two motors is adjusted at the factory by means of resistors R801. R802 and R803, and should be left alone unless shipping damage to the resistors has occurred. Both motors are adjusted for a tension of 5 to 6 ounces pull on the reel hub in Play. On top plates for $1 / 2$ inch or 1 inch wide tape these tensions are increased to 10 to 16 ounces. R802 is adjusted for the maximum hold-back tension during Fast Forward and Rewind which will still allow the tape to accelerate when starting with a full reel.

The third motor is the synchronous motor used for capstan drive. This motor is mounted on a hinge which is moved by a solenoid to engage the motor and the capstan flywheel. The hinge is positioned by the Drive Motor Return Spring "B" when the solenoid is deenergized. A stronger return spring is required for rack mounted machines than for console or portable units. See Section \mathbf{V} Parts List.

When the machine is turned on and the tape threaded into position, the solenoid "C" pulls the motor into engagement with the capstan flywheel tire and drives it, The pressure between the motor and flywheel is adjustable at spring "D" and is adjusted to give synchronous speed as described in INSTALLATION,

The capstan shaft has a permanently lubricated ball bearing at the bottom end to take the flywheel load and to maintain a minimum of friction, see Fig. 2 . The upper bearing on the shaft is a precision bronze sleeve bearing which permits absolutely true running of the capstan.

The mechanism of the capstan idler is operated by solenoid "E" in Fig. l and is returned by spring " A ". Capstan idler pressure is set so that it will deform or break the tape if the tape is stopped with the hand while the machine is running. This pressure is adjusted at point "F" in Fig. 1.

The reel idler is shown in Fig. 1 at " G ". This shaft has two single shielded ball bearings. Factory lubrication is for the life of the bearings. Should these bearings require servicing or replacement the complete reel idler assembly should be exchanged for a factory reconditioned unit. The extremely low pulley run-out of this assembly is achieved by a final finish cut being taken while running on its own bearings after final assembly. Under no circumstances should the shaft be removed from the assembly, since in all probability the relationship of parts will be lost. This may result in the introduction of the reel idler period into the measurable flutter and wow components of the machine.

The mechanical brakes on the rewind and takeup motors ordinarily require no adjustments. Should trouble occur which appears to be due to fallty braking,

$$
\text { SERIES } 300 \text { SECTION IV - Page } 1
$$

the tension may be adjusted. The only adjustment on the brakes is performed by adjusting tension at "H" in Fig. 1. If machine throws a loop of tape on stopping, the trailing reel brake tension is too low, or if it breaks the tape the tension is too high. However, unless tampered with, the adjustment should be permanent until such time as the brake bands wear out.

CLEANING: Daily attention should be given to the cleaning of the following:
(1) Capstan Shaft
(2) Head Faces
(3) Tape Guides

Clean all surfaces of the above with carbon tetrachloride applied with a soft cloth.

Weekly attention should be given to the cleaning of the capstan idler wheel. It should be cleaned with ethyl alcohol. Great care must be taken to see that oil does not reach the capstan idler tire. Oil will not only contribute to tape slippage but will also ruin the tire.

LUBRICATION: Every 3 months or 1000 hours.

1. Drive Motor: The drive motor uses a sleeve bearing and should be lubricated every three months or 1000 hours, whichever occurs first, with one of the following oils:

> Gulf Oil \& Refining Company Gulfcrest "A"
> Standard Oil Co. of Indiana Stanoil \#18 or \#25
> Sacony Vacuum Oil Co. Gargoyle D. T. E. Light

The motor should be lubricated with a pump-type oil can. To reach the upper bearing in the console model, use a flexible spout or else attach a piece of spaghetti to the end of the spout. In the portable model, the upper bearing is most conveniently reached by unbolting and lifting the top plate. The top plate should be tipped up by raising the righthand end, as viewed when facing the front of the machine. The plate need only be lifted a few inches to expose the bearing to be lubricated. CAUTION - DO NOT OVER-LUBRICATE SUCH THAT OIL MAY GET ON EXPOSED RUBBER SURFACES.
2. Capstan Idler: The capstan idler should be lubricated with a drop of S.A.E. 30 oil on all bearing surfaces. WARNING - under no condition should oil
be allowed to come in contact with the rubber surfaces of the capstan idler or the capstan flywheel.
3. Capstan: The uppér bearing of the capstan should be lubricated with S.A.E. 30 motor oil every 3 months. To oil: Loosen set screw in dust cap surrounding the capstan shaft just below the tape contact point. Push the rubber idler wheel away from the shaft just enough to allow the cap to be removed. This exposes a felt washer which covers the oil hole. Remove this washer and oil through the larger of the two holes exposec. Fill until no more oil will enter ! Replace as disassembled.

PRECAUTIONS:

REELS. In order for the brakes to work properly, the same size reel must always be placed on both turntables. In using the small RMA 5-or 7-inch reels, abnormal hold-back tensions will occur at the end of the reel due to the small hub diameter. This may cause trouble due to slippage at the capstan ider. If the small type reels are to be used exclusively, an additional $150 \mathrm{ohm}, 50$ watt resistor should be inserted in series with each of the resistors (R801 and R803), which are in series with the Rewind and Tapeup motors respectively. The machine will not meet specifications for flutter and wow when using the 5-or 7-inch RMA reels because of the discontinuity of the hubs on these reels.

BRAKES. In order to avoid the tightening action which occurs when brake bands become glazed, the brake bands have been treated with graphite. With the graphited brake bands, the proper tension as measured on the NAB reel hub in the unwinding or energizing direction is 14 oz . Should the brakes exhibit a tendency to tighten up or grab, they should be retreated with graphite. A mixture in the proportions of one level tablespoon of graphite to one 8 oz . cup of carbon tetrachloride can be applied to the felt of the brakebands with an oil can. After graphiting, the motors should be run 10 minutes with the brakes on to wear in the graphite. This may be accomplished by disconnecting the brake solenoids temporarily. On top plates for $1 / 2$ inch and l inch wide tape, asbestos brake linings are used to increase the braking tensions. Graphite should not be used on these linings.

TAPE SLIPPAGE. The tape will slow down near the end of the program. if the capstan idler pressure is not great enough. This, of course, will become worse at the end of the reel where the hold-back tension is highest. The condition is further exaggerated if a small RMA type reel is used, in which case the holdback tension is even higher.

Effective capstan idler driving force is reduced as the capstan ider gradually picks up the lubrication with which Minnesota Mining and Manufacturing Company type 111 tape is treated. This lubrication is quite important, as it reduces flutter and head wear, permits more uniform head contact and therefore 1 less high frequency amplitude variation, and any tendency for the tape to "squeak". This "squeaking" sometimes occurs at the slow speed when using the small recls
and is very objectionable. For this reason, the capstan idler should be cleaned with ethyl alcohol at least once each week.

To test for proper capstan idler pressure, hold the tape while the machine is running in the Play position. The idler pressure should be sufficient to deform or break the tape. The pressure can be increased by the adjustment at Point "F" in Fig. 1.

SPEED. If the machine has been subjected to severe cold the drive should be allowed to warm up for 5 minutes to reach stability. This is especially true at the high tape speed.

CAPSTAN MAGNETIZATION. The capstan may become magnetized by contact with a magnetized tool. Should this occur it may be demagnetized with an A.C. solenoid placed over the shaft and slowly pulled away.

DUMMY PLUGS. Two dummy plugs must be inserted into the appropriate sockets in the top plate for correct operation of the recorder. These plugs are catalog No, 567, 8 pin Jones plugs, with pins 1 and 2 jumpered and pins 7 and 8 jumpered.

1. One No. 567 must be plugged into receptacle J804S, labeled "Remote Control". located on the connector panel underneath the top plate. It is removed only when remote control is desired and the remote control cable must be plugged into the receptacle.
2. The other No. 567 must be plugged into receptacle J805S, labeled "Cable to Model 37560 Cycle Amplifier". located on the connector panel underneath the top plate. When the Model 375 is used with the recorder, the input-output cable from the 375 is plugged into this receptacle. NOTE: The Model 300 and 301 do not incorporate the 60 cycle amplifier connector; therefore, the second dummy plug is not required. If the Model 375 is to be used with these models, it should be wired to the capstan motor terminal strip as explained in the Model 375 Instruction Book.

B. Head Assembly

The head housing, See Figure 5, is a die cast assembly which contains the two heads used in the recording process and a rotating ider wheel. The heads are respectively record, and playback as viewed from left to right when facing the machine.

On dual track machines two heads of multi-channel design are incorporated in place of the standard full track heads. One head is stacked above the other with the gaps in line. The cables associated with the upper track are color coded red.

The gate on the housing holds the playback and record shield covers and the tape-lifting fingers. The function of the tape-lifting fingers is to remove the tape from the heads when the gate is open during Rewind or Fast Forward operation. This reduces head wear considerably. The tape may leave a deposit on the heads if allowed to contact them at high speeds. Such a deposit will seriously impair the performance of the machine and should be guarded against by always opening the gate on Fast Forward and Rewind. If a deposit is left, it may be easily removed with carbon tetrachloride on a soft rag. Never use metal of any kind to touch the head surfaces. The gate should never be allowed to spring shut but should be closed gently.

HEAD MAGNETIZATION.
Occasionally the heads may become magnetized through an electrical fault in the amplifiers, improper use of the machine, or by the heads coming in contact with a magnetized object. This will result in an increase of noise level from 5 to 10 db . It is especially important that the heads be free of magnetization if you are to realize the dynamic range of type 111 tape. It should be remembered that any phenomena that tends to put an unbalanced pulse through the record head will magnetize it. Such pulses can appear in the form of signal or power line pulses. If the following precautions are observed, no difficulty should be experienced:

1. Do not remove any tube from the record amplifier while the machine is recording.
2. Do not connect or disconnect input leads or head leads while recording.
3. Do not depress the Record button until after depressing the Start button. In other words, allow the transient caused by switching the motors and solenoids to die out before the record head is connected. A one-half second pause is sufficient.
4. Do not saturate the record amplifier with an abnormally high input signal. Such a signal would be 10 db . greater than tape saturation and 30 db . greater than normal operating level.
5. Do not test continuity in the heads with an ohm meter.

HEAD DEMAGNETIZATION.

Should the heads become magnetized, they can be demagnetized with an AMPEX head demagnetizer (stock number B-704). In the event that time does not permit the owner of the machine to wait for delivery of a demagnetizer, he may make one as follows: Cut a piece of transformer \dot{l} amination to a $1 / 4^{\prime \prime} \times 2^{\prime \prime}$ size. Wrap the strip of metal with suitable insulating material and wind approximately 400 turns of No. 36 wire and attach a 41 length of 2 connector cord. Bend the iron strip into a " U " shape and bring the ends of the " U " to a spacing of $1 / 4^{\prime \prime}$. Connect to a 6 volt source of A. C., open the gate on the head housing and bring the ends of the " U " in contact with the 2 poles on the magnetized head. Remove the demagnetizer very slowly, allowing the A.C. field to die off gradually. Repeat this operation on record and playback heads only, as the erase head will demagnetize itself. In the event demagnetization is not effected, repeat the process several times.

Reference \quad| Ampex |
| :--- |

Reference
Description
Number

A801
A802
A2001
C501
C601
C701
C801
C802
C803
C804
C805
C806
C807
C808
C809
F801
F802
F803
J801P
J802S
J804S
J805S
J806S
K801
K802
K803
R801
R802
R803
R804
S501
S502
S503
S801
S802
S803
S804
S805
S806
S2001
S2002
S2003
SR801

6-8 V. Panel Lamp - Bayonet Base	LA.5
120 V. 6 Watt Lamp - Candelabra Screw	LA -6
120 V. 6 Watt Lamp - Candelabra Screw	LA-6
5 MFD 330 V . AC Capacitor	CO-80
3.75 MFD 330 V . AC Capacitor	C0.86
3.75 MFD 330 V. AC Capacitor	CO-86
. 1 MFD 600 V . Tubular Condenser	CO-33
. 1 MFD 600 V . Tubular Condenser	CO-33
. 1 MFD 600 V . Tubular Condenser	CO-33
. 1 MFD 600 V . Tubular Condenser	CO-33
80 MFD 150 V. Electrolytic Condenser	CO-105
80 MFD 150 V. Electrolytic Condenser	CO-105
. 1 MFD 600 V. Tubular Condenser	CO-33
. 1 MFD 600 V . Tubular Condenser	CO-33
.1 MFD 600 V . Tubular Condenser	CO.33
5 Amp .250 V . Fuse	FU. 5
5 Amp. 250 V. Fuse	FU-5
2 Amp. 250 V. Fuse	FU-2
Chassis Connector	PL-27P
Chassis Connector	PL-68S
Chassis Connector	PL-54S
Chassis Connector	PL-54S
Chassis Connector - Utility Outlet	PL-141S
3 Pole Double Throw DC Relay	RL-26
3 Pole Double Throw DC relay	RL-26
3 Pole Double Throw DC Relay	RL-26
150 OHM 50 Watt Adjustable Resistor	RE-259
500 OHM 50 Watt Adjustable Resistor	RE-221
150 OHM 50 Watt Adjustable Resistor	RE-259
10 OHM 5 Watt W. W. Resistor	RE-264
Micro Switch	SW-2
Dual DPDT Toggle Switch	SW-51
Dual DPDT Toggle Switch	SW-51
DPST Toggle Switch	SW-4
6 Pole 3 Position Shorting Switch	SW-18
Single Pole Pushbutton N. C. (Stop)	SW-35
Single Pole Pushbutton N. O. (Record)	SW-34
Double Pole Pushbutton N. O. (Start)	SW-12
SPDT Toggle Switch	SW-28
Single Pole Pushbutton N. O. (Record)	SW-34
Double Pole Pushbutton N. O. (Start)	SW-12
Single Pole Pushbutton N. C. (Stop)	SW-35
Selenium Rectifier	SR-4

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLYI
MODEL 306 \& 307 SECTION VI - Page 5 8-15-52

Reference Number	Description	Ampex Catalog Number
B50 1	Top Plate Assembly (Complete)	1882
	Drive Assembly (Complete)	2327
	Capstan Assembly	1512
	Capstan Dust Cap	2326
	Capstan Felt Washer - Dust Seal	494
	Capstan Tru-Arc Retainer	RR-5-1
	Capstan Idler Assembly	500
	Capstan Idler Arm	. 372
	Capstan Idler Arm Bearing Housing	374
	Drive Motor Assembly - Complete with motor and pulley	1075
K502	Drive Motor Return Spring (Console \& Portable)	1024
	Drive Motor Return Spring (Rack Mount only)	390
	Drive Motor Shield	1905
	Drive Solenoid - DC	670
	Felt Washer	PW-6-1/4-416-816
K501	Drive Motor Pressure Adjusting Spring	389
	Capstan Solenoid	670
	Felt Washer	PW-6-1/8-416-816
	Capstan Ider Return Spring	400
	Capstan Idler Adjusting Spring	676
	Tape Speed Switch Assembly (Including S501, S502, and S503)	364
B701	Takeup Assembly Complete	339
	Takeup Motor Assembly - Complete with motor, flange, brakedrum and turntable.	2458
	Brake Housing	317
K70 1	Brake Band Assembly	328
	Brake Band Leaf	720-1\&2
	Brake Solenoid	337
	BrakeAdjusting Spring	322
	Turntable Pad	958
B601	Rewind Assembly Complete	338
	Rewind Motor Assembly . Complete with motor, flange, brakedrum and turntable.	2458
	Brake Housing .	316
K601	Brake Band Assembly	328
	Brake Band Leaf	720-1\&2
	Brake Solenoid	337
	Brake Adjusting Spring	322
	Turntable Pad	958
	Takeup Tension Arm Assembly	425
	Tape Guide	675
	Tape Guide Hook	355
	Takeup Tension Spring	422

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!

MODEL 306 \& 307 SECTION VI Fage 6 7-15-52

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!

Fig. 2

TO REMOVE ASSEMBLY FROM TOP PLATE REMOVE SCREW A, DISC B a SCREWS C A D. LIFT OUT. DO NOT OIL ASSEMBLY

TAKE-UP TENSION ARM ASSEMBLY SERIES 300
AMPEX ELECTRIC CORPORATION REDWOOD CITY, CALIFORNIA

FIG. 4

FIG 5

FIG. 2

FULL REEL

REEL IDLER ASSEMBLY
SERIES 300
AMPEX ELECTRIC CORPOMATION

FIG 5

SECTION I
Specifications for Model 306-1 and 306-2

The Ampax Nodels $306-1$ and $306-2$ are FM tape recorders deaigned for date recording of irequenoies between 0 and 5000 oyeles. A Model 307 three epeed Tape Transport is supplied with thes reoordere, although only 30 inch per second is used in the FM reoording syatem. The Modal 306-1 is a single channel unit while the $306-2$ is a dual channel unit.

Tape Speed:

30 inch per second for FM recording with 15 inch per seoond and 60 inch per second available for other reoording aysteme.

Frequenoy Response:

Plus 1/2 db 0 to 3000 aycles
Plus $1-3 \mathrm{db}$ to 5000 oyoles
Signal to Noise Ratio
40 db below 100% modulation

0
 Hermonis Distortion

2\% RMS total harmonio distortion at 100% modulation

Modnlator Reoord Amplifier

Input: 1 Voit RNs aine ware (1.4 Volts peak) at 100,000 ohm unbalanoed for 100% modulation

Input Connector: Cannon T-3-3
Controls: The carrier irequenoy ajustment is a looked sorew driver control. The Level Adjustmant is a looked sorew driver control ant to provide 100% modulation for 1 Volt RMS input. A phone jack is provided on the front of the raok panel for monitoring the carpiar frequency.

Demodulator Plarback Amplisiar

Output: 1 Voit RMS sine wave (1.4 Volt peak) at 600 ohms unbaianoed for a 100% modulated input.

Output Conneotor: Cannon XI-3-14
Controls: The olipping level control is a looked sorew driter adjustment whioh varies the output roltage orar a narrow range. It is faetory set for 1 Volt RNS output at 100% modulation. The DC zero balance adjuatment is a looked sorew driver oontrol. A test faok is provided at the input of the playbook amplifier. A test oable is provided to alscmiate the output of the reoord amplifier so it oan be conneoted to the ingut of the plagback anpifier. This arrangement allows ayetem oalibiation and overall
performano ohecke independent of the tape operntion.

1
 Sterting Time:

Appoximately 10 sacends for stable motion with elow atart ($60^{\prime \prime} / \mathrm{sec}$) . With fart start ($15^{\prime \prime}$ and $30^{\prime \prime}$) $1 / 10$ acoond. The charge iren fast start to siow start is made by surtoh undarneath the top plate. The fast start oannot be used at 60 inehes per second.

Rewind Tlag: One minute for full $10-1 / 2$ inoh diameter reel.
Tape Tranteport Control
Start, Stop, and Record are relay oontrollad. The relay are opm erated by puah buttons on the top plate. A receptacie is provided

- to Ellow conacotion of start, Stop, and Reoord mitohes from a ramoted loostion to operate these funesions.

Complote Piur-In Head Alaghliy:

Double Mu-matal shield oans on playback head, equivaleat abielding on reoord head, metohing alf-aligned oovers on hinged gite. Dropin tape threading.

Dimensions:

Meohanical unit on $24-1 / 2^{\prime \prime}$ panel for standard raok mounting;

```
N eleotronio unit on \(22-1 / 4^{\text {m }}\) panel for stancard raok mounting.
```


Momatintis

Console, Portable Oase, and Rack Mount.

A. E1eotricn:

Mochanionl operation of the ocmplete reeoeder is covered in Section IIImB of this Inftruettion Book. GANIONs Be everain that tape apeed is ent fex 30 inehes per cecond.

Adjust Ierral of agnal to be reeored to Lo wolta kis aine wave or

Normally it is not neoeseary to premerase the tape. However, for highert aignalmtomoise ration, premeriee the tipe with a good tank cracer.

The Ploback Iovil coatrol has been adjuwted st the feetory to eive an output of 1.0 volte mes aine wave into a 600 ohn loed, weth recoxdinges made ath a 1.0 volt Ras inpett.
groTr

ELEOTRONTC ALTGNKLNT

Alignmant 18 the neocssary edjurtments required to heve the sleotronlo Asaembly of the tape recorder parform propiriy. It should not be neetssary to align the raoorder when it oosen to you from the faotory, sines the proocdures desoribed on the following pages have bean performed at the faotory prior to alapmant.

Alignment consists of the following stepe:
I. Fead Alignment (Not required on misi-track maohines with three or more treoks)
II. Power Supply Voltege Adjustmat
III. Record Cirouit Alisamant
IV. Plajbat Cirouit Alignment

The pollowing equipment is required for oomplete aligamant.

1. AC Vacuum Tube Voltmeter such as Eiviett Packard 4000.
2. Audio Osoillator with a range from 100 to 100,000 oyeles suoh as Hewlett Packard 2000.
3. DC Voltmeter
4. Frequenoy Meter os Cecunter, or 0scillescope.
5. Head Phoncs.
6. Standard Alignment Thpe oatalog H199h. This is a tape recorded at 30 inoh per seoond contaling a 40 tis tome for playbock head aligniant. The remainigg tonca are for ues In aligning other types of tape recordera. The level of the 40 KC tone will slowiy drop with continued usage, especialiy if the beads are magnetized. It in tharefore rooommaded that the heads be demagetised with an Ampex Read Demagnetizer 704 before playing the standard tape.

I Head Al1rnmant

The high frequenoy reaponse of the heads is dependent upon 00 rrace head alignment. Since 100% modulation produces frequeney omponente up to 38 KC the reoord and piaybaok head asimathe mast be oorreotis alianad for the propar operation of the mochinc.

The aotual physioal allgnment of the reoord and playback heads eonasts of placing a $1 / 4$ inch Spintite sooket wrench on the left hand - Iastio stop nut and adjusting back and forth until the proper azimuth angle is determined.

To align the playback head, thread a tandard alignmat tape 1994 on the mahinc. Disconneot the plarback head ceble frem the Elestronic Asesmbly. Connsot a Hewlett Packard 400 C Miter or equitaleat aerose pins B and C of the head cable conncotor. Jumper pin B to the able shicld. Adjust the playback head azimuth for maxima ouspert of the first tonc on the tape (40 KC). The roice ennouncemente on the standard tape oan be heard by ornncoting headphones to the outpot of the voltmeter.

To adjust the reoord head azimath with the playback head, tank crame a tape and thriad on the mohine. Leave the voltmater connected to the playback head oable. Disconneot the reoord head oable and imprese a 40 KC aignal from an auilio osolilator on the two oonteets of the head oable conncotor. Adjust the record head azimath for maxime playback output as read on the voltmeter.

The Model 306 incorporates ileotronioally regulated power supplias with adjustable output voltage. Both record and playbaok ampliflers obtain power from one power supply on the Model 306-1 and $306-2$. On maltimtrack manines with three or more traoks separate power supplies are ineorporated for reoord and playbaok. In either oase, the 100 ked sorew driver control should be adjusted to produal and out put roltags of 250 Voits. The ragulators are deaignad to maintain this voitage throughout primary supply voltage ilmits of 105 to 130 Volts.

III Resord Alirnmant

The basio element of the reoord amplifier is a fres-running, positive-grid multivibrator, $\nabla 202$, the operating paramaters of whioh are so ohosen that the no-signal operating frequenoy, whioh will be referred to subsequently as the oenter frequenoy, 1 s 27 ko . It is oharaoteristio of this type of misivibrator that the repetition rate is very nearly a 11 niar punotion of the positive gridmreturn potential with respeot to the cathodes.

The grids of the multivibrator, or modulator, are returned to the plate of a do amplifier, V201, whioh amplipies the input signal to the level required to produoe the degree of irequeney deviation necescary for adequate reproduoed signal-bonnoise ratio.

The rariable Fraqueney Adjustment reaistor, R213, is provided in the oathode raturn oirouit of the do ampilifier so permit adjustannt of the statio plate current to the ralue required to oause the modulator oentar frequenoy to be exaotly 27 ko .

A ourrent regulator tube, V204, has been incorporated to provide cesentially conatant heater current for the do amplifier tube, thereby minimizing center frequeney drift reaulting from heater supply voltage variations.

An 1solation amplifier, compriaing one half of 7203 supplies ourrent to the reoord head. The remaining haif of V203 is connested as a aathode followar, whion supplies powar to an auriliary test jaok, J203, iocated on the front panci of the reoord emplifier.

The following prooedure is recommended for proper edjustmant of the reord amplifier.

1. Turn on Power switoh, loasted on the $80 p$ plate. Kake cestaln that the Mode seleotor awitoh is in the Play position. Allow suff: ilelent time for tube and component temperatures to stabilize.
2. Conneot a Frequenoy Meter or Counter to Teat Jack J203. If desired, comparison of the output with a signal of known frequemer can be recelify acomplished with an osoilioscope, unine the Liemfoue figure teohnique.
3. Romove the input cable from Inpat receptacle J2018. produte Uniook and adjust the Frequenoy Adjust oontrel, R313, \$0 produte ecnter frequeney of exaotis at to.
4. Conneot a 1.41 volt direat ourrent souree to the input reoeptaole, j201s, making terminal 3 positive with reape ot to ground.
5. Uniock and adjust the Level oontrol, R21.1, until the indiceted modulator frequenoy is 16 ko. , whioh correspoads to a deviation of approximately 40%.

The rucord amplifise will now be properly adjusted for rea oording under normal conditions. It la suggested that the oenter frequeney be oheoked before recording data having very low irequeney componente.

Plarback Alinament

The frequenoy-modulated ignal reoovered from the tape by the playback head is amplified by V301 and iimited by V302 and V303 to a predetermined amplitude of approximately 0.5 roit to minimize amplitude variation effeots. The resultant signal is further amplified by V304 and again ilmited to an amplitude of 0.5 volt by V305 and V306. The squared wave is amplified by V307, after which it 1s ilmited by V308 and V309 to an amplitude determined by the Level Set control, R338. The limiting leval at this point determiaes the amplitude of the recovered signal voltage delivered to the load, thus performing the funotion of a gain control in a ocarentional amplifier.

The fixed-amplitude square waves are differentiated and the pulses introduced into phase inverter, $\nabla 310$, followed by the demodulator oircuit, comprising diodes V311 and V312. The average component of the negative pulses appearing on the grid of V313 varies in proportion to the amplitude and rate of ohange of the reoorded data signal.

The demodulated pulses ard amplified by do amplifier V313 and introduoed into a low-pass ifiter through an insolating oathode follower, V314. The frequenoy reaponge of the system is determined by the attenuation oharacteristios of the filter.

The output of the iflter is coupled to the rad texuinals thrpugh a cathode follower, ${ }^{2} 35$. Operating potentials of the oathode follower are so chosen that the cathode roltage, appeariag on terminal 3 of J303P, is zero with raspeot to ground. The do Zero Adjust oontrol, R336, is provided on the pahel to permit cmot adjustment of : this potential.

It is reoomended that the following procedure be followed to properiy adjust the Playback Amplifier:

1. Record test tapa on properiy allgned Reoord Maohinc. Fied a 200 oyole sinusoidal aignal having an amplitude of 1 rois rme into the Record Amplifier. After making the test tape, trensfer it to the Playbaok Maohine.
2. Conneot a 600 ohn land aross the turminals of the outpat reosptaole, J303P.
3. Conneot a do roltmater arose the 1 oad.
4. Conneot an ao voltmeter aoross the load. A suitable blocking oapacitor mat be inserted in series with the instrument if it responds to a do oomponent.
5. After threading the tape, depress the Start button.
6. Adjust the Level Set oontrol, R338, provided on the front panel, to produce an output voltage aoross the load of 1.0 volts rme.
7. Adjust the Zero Adjust control, R336, to the point whioh provides zero do voltage aoross the load. If the Zero Adjust oontrol does not acoomplish this result approximately mid-way between adjustment limits, correction of the do level may be effeoted by adjustment of the Bias Adjustment control, R330, looated on the ohasais.
8. Repeat steps 6 and 7; some degree of interaction is a normal oheracteristio of the oircuit.

It is possible to align the Playback Amplifier independent of the tape system. Connect the \#4lll Test Cable from the Test Jack J203 of an alifned Reoord Amplifier to the Test Jack J302 of the Tlavback Arpififier. The Test Cable inoorporates a 22k resistor in eeries with the center conduotor to prevent overloading of the playbact amplifier. Note: The playback head oable rangt be plugged into T301P, or pins B and C of J301P shorted together, for oorreot operation of the Test Cable. Repeat the steps desorined above while feedine the Record Amplifier with a 1 Voit RMS 200 oyole signal.

SECTION VI
RECORD AMPLIFIER STRIP

SingleChannel Catalog \#3670
Dual Channel Catalog \#3671

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!
MODEL 306 SECTION VI - Page 1 7-15-52

PLAYBACK AMPLIFIER STRIP CATALOG \#3669 Ampex

Reference Number	Description	Catalog Number
C-301	. 0005 MFD 600 V. Paper Condenser	CO-231
C-302	. 001 MFD 600 V. Paper Condenser	$\mathrm{CO}-216$
C-303	. 1 MFD 400 V. Metalized Paper Condenser	CO-44
C-304	. 005 MFD 600 V. Paper Condenser	CO-217
C-305	. 25 MFD 400 V. Metalized Paper Condenser	CO-45
C-306	. 005 MFD 600 V. Paper Condenser	CO-217
C-307	. 5 MFD 400 V. Metalized Paper Condenser	CO-46
C-308	8 MFD 350 V. Electrolytic Condenser	CO-215
C-309	. 00005 MFD 500 V. Mica Condenser 5%	$\mathrm{CO}-2$
C. 310	. 1 MFD 400 V . Metalized Paper Condenser	CO-44
C-311	. 1 MFD 200 V. Metalized Paper Condenser	C0.97
C-312	. 01 MFD 400 V. Metalized Paper Condenser	CO-42
C-313	10 MFD 25 V. Electrolytic Condenser	CO-198
C-314	. 01 MFD 400 V. Metalized Paper Condenser	CO-42
C-315	10 MFD 25 V. Electrolytic Condenser	CO-198
C-316	. 01 MFD 400 V. Metalized Paper Condenser	CO. 42
C-317	. 1 MFD 400 V . Metalized Paper Condenser	CO-44
C.318	. 0029 MFD 500 V. Mica Condenser - Bridged	CO-9
C-319	. 0017 MFD 500 V. Mica Condenser - Bridged	CO-228
C-320	. 0005 MFD 500 V. Mica Condenser - Bridged	CO-5
C-321	. 000056 MFD 500 V. Mica Condenser - Bridged	CO-227
C-322	50 MFD 50 V . Electrolytic Condenser	CO-61
C-323	100 MFD 15 V. Electrolytic Condenser	CO-229
FI-301	5000 Cycle Low Pass Filter	3668
J-301P	Connector AN-3102A-10SL-3P	PL-59P
J-302S	Phone Jack	JA-2
J-303P	Connector Cannon XL-3-14	PL-4-P
L-301	. 5 Henry Torroid	CH-41
NE-301	1/25 Watt Neon Bulb NE-2	LA - 4
R-301	100,000 Ohm 1 Watt Composition Resistor	RE-26
R-302	240,000 Ohm 1 Watt Composition Resistor 5\%	RE-475
R-303	27,000 Ohm 1 Watt Composition Resistor 5\%	RE-19
R-304	47,000 Ohm 1 Watt Composition Resistor 5\%	RE-22
R-305	330,000 Ohm 1 Watt Composition Resistor 5\%	RE-30
R-306	4,700 Ohm 1 Watt Composition Resistor 5\%	RE-11
R-307	47,000 Ohm 1 Watt Composition Resistor	RE-22
R-308	330,000 Ohm 1 Watt Composition Resistor	RE-30
R-309	2,200 Ohm 1 Watt Composition Resistor	RE-7
R-310	1,000 Ohm 1/2 Watt Composition Resistor	RE-448
R-311	4,700 Ohm 1 Watt Composition Resistor	RE-11
R-312	10,000 Ohm 1/2 Watt Composition Resistor	RE-453
R-313	39,000 Ohm 2 Watt Composition Resistor	RE-174
R-314	100,000 Ohm 1/2 Watt Composition Resistor-Bridg	d RE-549
R-315	47,000 Ohm 1/2 Watt Composition Resistor-Bridged	d RE-486

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!
MODEL 306 SECTION VI - Page 2 7-15-52

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLYI
MODEL 306 SECTION VI - Fage 3
8-19-52

Reference Number	Description	Ampex Catalog Number
C-401	1. MFD 600 V. Oil Filled Condenser	$\mathrm{CO}-48$
C-402	4×20 MFD 450 V. Electrolytic Condenser	CO-126
C-403	10 MFD 600 V. Oll Filled Condenser	CO-50
C-404	. 1 MFD 600 V. Paper Condenser	CO. 33
C-405	. 25 MFD 600 V. Paper Condenser	CO. 35
C-406	20 MFD 450 V. Electrolytic Tubular Condenser	CO-57
C-407	. 1 MFD 600 V. Paper Condenser	CO-33
C-408	. 1 MFD 600 V. Paper Condenser	CO-33
C-409	. 1 MFD 600 V. Paper Condenser	$\mathrm{CO}-33$
C-410	. 05 MFD 600 V. Paper Condenser	CO-32
K-401	3 PDT Relay 115 V . D. C.	R L- 26
L-401	12 Henry Filter Choke	3479
L-402	15 Henry Filter Choke	CH-33
R-401	39 Ohm 1 Watt Composition Resistor	RE-497
R-402	39 Ohm 1 Watt Composition Resistor	RE-497
R-403	2,700 Ohm 1/2 Watt Composition Resistor	RE-375
R-404	2,700 Ohm 1/2 Watt Composition Resistor	RE-375
R-405	1 Megohm 1/2 Watt Composition Resistor	RE-385
R-406	15,000 Ohm 10 Watt Wirewound Resistor	RE-16
R-407	10,000 Ohm 2 Watt Composition Resistor	RE-168
R-408	100,000 Ohm 1 Watt Composition Resistor	RE-26
R-409	25,000 Ohm Potentiometer	RE-481
R-410	33,000 Ohm 1 Watt Composition Resistor	RE-20
R-411	100,000 Ohm 1 Watt Composition Resistor	RE-26
R-412	15,000 Ohm 1 Watt Composition Resistor	RE-16
R-413	3,500 Ohm 10 Watt Wirewound Resistor	RE-326
R-414	10,000 Ohm 25 Watt Wirewound Resistor	RE-122
T-401	Power Transformer	TR-39
TS.401	Terminal Strip	TS-1-8
V-401	5U4G Vacuum Tube	TU-1
$\mathrm{V}-402$	6×5 Vacuum Tube	TU-19
$\mathrm{V}-403$	6AS7 Vacuum Tube	TU-17
V-404	6AC7 Vacuum Tube	TU-4
$\mathrm{V}-405$	VR75/OA 3 Vacuum Tube	TU-21
V-406	VR75/OA3 Vacuum Tube	TU-21
V-407	VR75/OA3 Vacuum Tube	TU-21
V-408	VR150/OD3 Vacuum Tube	TU-2

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!
MODEL 306 SECTION VI - Page 4 7-15-52

NOTE

I ALL RESISTAVCES MEASURED IN OHMS
AND ALL RESISTCRE RATED $1 / 2$ WATT
UNLESS OTHERNISE SPECIFIED
2 ALL CAPACITIES IN MICROFARADS
UNLESS OTHERWISE SPECIFIED
3. SCHEMATIC REF. NOS. SHOWN ARE FOR CHANNEL NO.I
$\frac{7}{\square}$ SCHEMATIC REF. NOS. FOR CHANNEL NO. 2 ARE $1 C O$ SERIES.
4. ALL VO_TAGES MEASURED WITH 2O,OOO OHVIS/VCLT METER WITH
O) RATED PLATE SUPPLY VOLTAGES AND NO INPUT VOLTAGE.

FILAMENT CONNECTIONS
2 CHANNELS SHOWN

SERIES.
METER WITH
-TAGE.

RECORD CHANNEL MODEL S-3107
AMPEX ELECTRIC CORPORATION REDWOOD CITY, CALIFORNIA

FCR I2 VGLT FILAMENT
GUERATICN, JUMPER 2 TO 3 AS SHOWN AND USE 3 AND 4

FOR 24 U: T ILAMENT
OPERATIUN, USE $2 A N D 3$ AND REMOVE JUMPER.

FIG. 13

III. ELECTRONICS ASSEMBLY:

The Electronic Assembly of the Models 402 \& 403 Recorders consists of a Record Amplifier, a Playback Amplifier and an Erase and Bias Oscillator on one chassis and a Power Supply on a separate chassis.

The Record Amplifier is a four stage, high gain amplifier that feeds the Record Head through the Noise Balance Circuit and Record Relay (K401). The Record Relay is energized by the Record Button (S403) through contacts of the Start Relay (K505) in the energized position and contacts of the Fast Forward Relay (K506) and the Rewind Relay (K507) in de-energized positions. Therefore the Record mode of operation can only be realized when the tape is traveling at the Flay speeds. Whenever the Fast Forward, Rewind or Stop Buttons are depressed, the Record Relay will be de-energized. Three input impedances can be selected by the Input Transfer Switch (S401); low impedance microphone, balanced bridge and unbalanced bridge. The Record Amplifier also provides separate high frequency pre-emphasis for each speed. This change in equalization is made by the Equalization Speed Switch (S402) located on the front panel. The Record Gain Control (R409) is located on the front panel.

The Playback Amplifier is a three stage amplifier which provides a plus 4 VU 600 ohm output at the Line Cut Connector (J404P). The playback equalization is the same for both speeds and is adjusted to a standard curve (Figure 6) by R432, located on the top of the Electronics Chassis. The playback gain is controlled by R437 also located on the front panel. An output termination is provided by the Line Out Termination Switch (5404).

Monitoring is provided by a VU Meter and a Phone Jack connected to the I layback Amplifier output. The Meter and Output Switch (S405) provides four monitoring checks: Playback Level, Record Level, Bias Current, Erase Current. In the Erase position the VU Meter is connected across the 7 ohm resistor (R448) to read erase current. In the Bias position the meter is connected across the adjustable 500 ohm resistor (R450) to read bias current. In both the Record and Playback Level positions the meter is connected across the Playback Amplifier output. In the Playback position the Playback Amplifier functions normally and the output of the tape is monitored. In the Record position the last two stages of the Flayback Amplifier are disconnected from the first stage and bridged across the Record Amplifier before pre-emphasis through the Record Level Meter Calibration Control (R413). The Calibration Control is adjusted so that the desired record level will be effected on the tape.

The Erase and Bias oscillator provides the 100 KC erase and bias frequency. It feeds the erase head through the Erase Trimmer (C435) and the record head through the Record Bias Control (R449) located on the top plate of the Electronics Chassis. The Fower Supply provides the 6.3 Volt AC heater power, the 12.6 Volt DC heater power through a full wave selenium rectifier (SR601) and the plate supply through the 5Y3G Full Wave Rectifier (V601).
down the Stop and Fast Forward or the Stop and Rewind Buttons. Now press the Start Button and control the tape speed with this button. CAUTICN: Avoid this operation at high speeds, as it will result in tape breakage if the wrong combination of buttons should be pushed. When the tape is traveling at high speed in the Rewind or Fast Forward mode, the tape will break if the Stop and Start Buttons are pressed in rapid sequence. This is caused because sufficient time is not allowed for the brakes to stop the tape before the Capstan Ider locks the tape to the Capstan.

VaI. PLAYBACK:
To play back a previously recorded tape, turn the Meter and Output Switch, (S405), to the extreme left position designated PLAYBACK. Then start the tape in motion as indicated under PLAY. A Playback Level Control has been provided on the front panel to adjust the tape level to plus 4 VU output.

VIII, RECORD:
To record a new program on previously recorded tape, or on blank tape, turn the Meter and Output Switch (S405) to the second position from the left which is designated RECORD-LEVEL. Turn the Record Level Control, (R409) clockwise until the level reads 0 (zero) on the VU Meter on the most intense program peaks. The program can be audibly monitored through either the Phone Jack (J403S), or the Line Cut Connector (J404P) before the tape is in motion. (For correct meter calibration it is important that the Line Out be properly terminated either external to the machine or by use of the Line Output Termination Switch, (S404). This direct monitor feature allows the program to be set up through the machine without actually recording during the set up period.

When the program level is properly set, start the tape in motion as indicated under PLAY. Then push the Record Button, (S403). (It is desirable that a delay of at least $1 / 2$ second occur before the Record Button is depressed, as the surge from operating the Start Button may magnetize the record head, thereby increasing the noise level on the tape.) The Record Indicator, (NE401), next to the Record Button will now glow and the machine is recording.

It is desirable to check the record bias and erase currents occasionally. In order to do this, re-position the Meter and Output Switch (S405), to the positions designated BIAS and ERASE, respectively. The erase is not critical and should read approximately zero on the meter scale. The bias should read between $-1 / 2$ and $+1 / 2$ on the VU scale. The bias is somewhat critical and must be kept within the indicated range in order to record the higher frequencies at $71 / 2$ inch tape speed.

The bias is adjusted by means of the Bias Control, (R449) located on top of the electronic chassis. The meter calibration for bias measurement can be checked as indicated in Section VI.

An actual comparison of the recording with the direct program can be made both audibly and on the VU Meter by moving the Meter and Output Switch, (S405), to the extreme left position for playback monitor, and then to the second from the left position for monitor of the unrecorded program. The Playback Level Control must be adjusted for the same output as that obtained from the record monitor position. Care must be taken not to record at the wrong level on the tape which is possible if the Meter and Output Switch is left in the playback position with the Playback Level Control arbitrarily set.

When the program being recorded is finished, press the Stop Button. The Tape Transport will stop and the Record Relay will drop out, making the record circuits inactive. The record circuits will remain inactive until the Record Button is again depressed while the tape is moving in the Flay mode.

NOTE:

Because of the extremely wide frequency range of the VU Meter, some pickup of the erase and bias frequency will be experienced while monitoring the record or playback level while recording. The pickup of this oscillator frequency (approximately 100 KC) if read on the VU Meter will be at least 20 db below the program level. This does not interfere in any way with the performance of the machine.

```
SEこTIONVI
```

EIECTRONICALIGNMENT

Alignment is the necessary adjustments required to have the Elec-- tronic Assembly of the tape recorder perform properly. A machine "out of alignment" may be characterized by poor frequency response, high noise, low output, or high distortion. It should not be necessary to align the recorder when it comes to you from the factory. The procedures described on the following pages have been performed at the factory prior to shipment. No further adjustments should be necessary except as required by routine maintenance where the machine will not perform as indicated under Specification Section I when checked according to Section II-VIII.

Alignment consists of the following steps:
I. Head Alignment
II. Playback Circuit Alignment
III. Record Circuit Alignment

1. Bias Adjustment
2. Noise Balance
3. Record Equalization
A. $71 / 2$ inch per second
B. 15 inch per second
4. Erase Adjustment
5. Record Level Meter Calibration

A standard tape is available for alignment purposes and contains the following frequency run recorded at 15 inches per second, 10 db below 15 inch operating level. IMPORTANT. Before playing the standard tape demagnetize the heads with the AMPEX Head Demagnetizer, catalog \#704. Magnetized heads will cause a partial erasure of the high frequencies on the standard tape.

1 kc for level adjustment
15 kc for playback azimuth alignment
50 cycles

100	'!	8000	cycles
200	11	9000	"
400	"	10000	"
800	1	11000	"
1600	11	12000	"
3200	"	14000	"
6400	11	15000	"

MODELS $400 \mathrm{~A}, 402$ \& 403 SECTION VI Page 1

I. HEAD ALIGNMENT:

The high frequency response of the recorder depends on the correct head alignment. If tapes are to be interchangeable from one machine to another the heads of all machines must have the same azimuth setting. This is accom. plished by using a Standard Tape (Catalo'g \#1993), for aligning the heads of all machines. Head alignment is independent of tape speed; however, it is recommended that the heads be aligned at 15 inches per second since the standard tape is recorded at this speed.

Remove the top cover from the Head Housing by removing the two screws from the top and pulling cover gently back and up. Looking at the Head Housing from the front the three heads from left to right are: Erase, Record, and Playback.

The azimuth angle of the erase head is not adjustable.
The Record and Playback Heads should be aligned only after reading and fully understanding the procedure under PLAYBACK AND RECORD CIRCUIT ALIGNMENT.

The actual physical alignment of the Record and Playback Heads consists of placing a $1 / 4^{\prime \prime}$ spintite socket wrench on the left hand elastic stop nut in each head and adjusting back and forth until the proper azimuth angle is arrived at.

First adjust the Playback Head azimuth by playing the standard tape at 15 inches per second and adjusting the stop nut for the maximum output of the 15 kc tone (second tone that appears on the standard tape).

The Record Head azimuth is then aligned with the Playback Head by recording a 15,000 cycle signal from an audio oscillator on a blank tape and adjusting the record stop nut for maximum playback output.

II. ALIGNMENT OF PLAYBACK CIRCUIT: Refer to Figure 1.

1. Position the Electronic Assembly so that adjustments can be made on the controls located on the top of the chassis.
2. Set the Tape Speed Switch (S502) and Equalization Speed Switch (S402) to 15 inches per second.
3. Set the Meter and Output Switch (S405) to the PLAYBACK-LEVEL position.
4. Terminate the line output either by means of the Line Out Termination Switch (S404) or by external termination of 600 ohms.
5. Connect an amplifier and loudspeaker to the output or plug in a pair of high impedance head phones so that voice announcements on the standard tape can be heard.
6. Thread the standard tape on the machine and set the tape in motion in the Play mode of operation.
7. Adjust the Playback Level Control (R437), for a reading of $\vdots 10$ on the VU Meter on the 1,000 cycle tone. Retain this setting for all the following adjustments except Record Equalization.
8. Adjus t the Playback head azimuth as discussed under HEAD ALIGNMENT.
9. PLAYBACK EQUALIZATION: The Playback Amplifier is factory equalized by means of the High Frequency Playback Equalizer (R432), Figure 9, in accordance with the standard voltage curve shown in Figure 6. The recommended method for adjusting the Playback Amplifier response is to connect an audio oscillator and vacuum tube voltmeter to the Playback Amplifier ás shown in Figure 6. Adjust the Playback Equalizer (R432) to give the frequency response of the standard 50 microsecond curve. Deviation from this curve is not recommended.

The above will properly align the playback circuit for operation at both speeds.

The 15 inch standard tape will play back within $\mathbf{t 2} \mathrm{db}$ to 15,000 cycles when the Flayback Amplifier is adjusted to the standard curve. Failure for the standard tape to play back within these tolerances after the Playback Amplifier has been aligned indicates one of the following:
a. Trouble in the Head Assembly such as worn heads.
b. A faulty Standard Tape which has been partially erased at the high frequencies by passing over magnetized heads, etc.

An overall frequency response check will isolate the trouble. Good overall response indicates a faulty Standard Tape. Poor overall response indicates one of the following:
a. Faulty Heads.
b. Tape deficiency.
c. Record or Playback Amplifier improperly equalized.
d. Incorrect bias.

Alignment of the Record Circuits as described in the next sub-section will further isolate the trouble. It should be remembered that the equalization curves have been established with Minnesota Mining and Manufacturing Company type 111 tape, construction 5RBA. Tapes of other manufacture may produce slight deviations in performance.
III. ALIGNMENT CF THE RECGRD SIRCUITS: Refer to Figure 1.

The $71 / 2^{\prime \prime}$ and $15^{\prime \prime}$ per second record alignment should not be attempted until the playback is properly aligned.

Perform the following in the order indicated:

1. Bias Adjustment:
a. Output of Playback Amplifier must be properly terminated as in Playback Alignment.
b. Set the Speed Switches (S402 and S502) to $15^{\prime \prime}$ per second.
c. Thread blank tape on the machine and set the tape into motion in the Play mode of operation.
d. Connect an audio oscillator to the Input Connector (J 401 S), set the Input Transfer Switch (S401) for unbalanced input, and adjust the frequency to 1,000 cycles.
e. Push the Record Button (S403).
f. Adjust Bias Control (R449) on top of the chassis for maximum playback level of 1,000 cycle tone while recording and playing back simultaneously. It is desirable to be within $1 / 2 \mathrm{db}$ of the maximum efficiency point in order to achieve wide frequency range recording at $71 / 2^{\prime \prime}$ per second.
g. The Bias Meter Calibration is adjusted as follows: After the bias is adjusted, meter the bias in the normal fashion and adjust the Meter Shunt (R450) for 0 (zero) reading on the VU scale of the meter. R450 is located on top of the chassis.
2. Noise Balance: A noise balance control is provided to eliminate excessive low frequency noise and null second harmonic distortion. The noise balance should not be touched unless all heads have been thoroughly demagnetized with an AMPEX Head Demagnetizer or equivalent (See Section V). If noise of a crackling nature is still found to exist in the output of the machine connect a 1 mfd . condenser across the output of the machine and adjust the Noise Balance Control, (R424), Figure 9, for minimum record noise as read on a sensitive meter or heard in a loudspeaker connected to the machine output through a power amplifier.
3. Record Level Meter Calibration: The Record Level Meter Calibration Control (R413), Figure 9, is adjusted so that the program level as read on the VU Meter is the same as monitored from the Flayback Head or the incoming line. This is accomplished by recording a 400 cycle tone (or program in the absence of an audio oscillator) at 0 (zero) on the VU Meter with the Meter and Output Switch in the PLAYBACK-LEVEL position. Then switch the Meter and Output Switch to the RECORD-LEVEL position and adjust the Record Level Meter Calibration Control for 0 (zero) on the VU Meter.
4. Record Equalization: The $71 / 2$ inch and 15 inch record equalization circuits have been factory adjusted to the curves shown on Figure 7. These curves have been found to produce flat overall response, when recording on Minnesota Mining and Manufacturing Company type 111 tape, construction 5RBA. Cther tapes may require resetting of equalization and Bias Control. Badly worn tapes may produce loss in high frequency response at the $7 \mathrm{l} / 2$ inch speed and should not be used.

The adjustment frocedure for flat overall response on any tape is as follows:
A. $71 / 2$ inch Record Equalization Adjustment.

1. Reset oscillator to 400 cycles.
2. Set Playback Level Control for maximum gain (fully clockwise).
3. Set Record Level Control (R409) so that the VU Meter monitoring Playback reads "0".
4. Adjust record head azimuth as discussed under HEAD ALIGNiNE NT.
5. Reset oscillator to 8,000 cycles.
6. Adjust $71 / 2$ inch Record Equalizer (C406), Figure 9, so the VU Meter monitoring Playback reads -10 .
7. Frequency response should be $\pm 2 \mathrm{db}$ from 40 to 8,000 cycles. Due to tape saturation, frequency chē$k s$ cannot be made at $71 / 2$ inch tape speed, at this level, beyond 8,000 cycles.

In order to run response checks beyond 8,000 cycles reduce input level so that output as read on VU Meter is -10 at 1 KC . Run response check at this level.
B. 15 inch Record Equalizer:

1. Set Speed Switches (S402 and S502) to the 15 inch positions.
2. Reset oscillator to 400 cycles.
3. Set Record Level Control (R409) so that the VU Meter monitoring Playback reads "0".
4. Reset oscillator to 8,000 cycles.
5. Adjust 15 inch Record Equalizer (C407), Figure 9, so the VU Meter monitoring Playback reads " 0 ".

Reference Number	Description	Ampex Catalog Number
	III. ELECTRONIC ASSEMBLY - Catalog \#3621	
C401	. 25 MFD 400 V. Metalized Paper Condenser	CO.45
C402	25 MFD 25 V. Electrolytic Condenser	CO-59
C403	4 MFD 150 V. Electrolytic Condenser	CO-53
C404	25 MFD 25 V. Electrolytic Condenser	CO-59
C405	. 25 MFD 400 V. Metalized Paper Condenser	CO-45
C406	. 0001 MFD Padder Condenser	CO-92
C 407	. 0001 MFD Padder Condenser	CO-92
C408	. 1 MFD 408 V. Metalized Paper Condenser 5\%	CO-101
C409	25 MFD 25 V. Electrolytic Condenser	CO-59
C410	10 MFD 450 V. Electrolytic Condenser	CO. 55
C411	. 05 MFD 400 V. Metalized Paper Condenser	CO. 43
C412	1 MFD 400 V. Metalized Paper Condenser	CO. 47
C413	16 MFD 150 V. Electrolytic Condenser	CO-56
C414	. 1 MFD 400 V. Metalized Paper Condenser	CO-44
C415	. 1 MFD 400 V. Metalized Paper Condenser	CO. 44
C416	. 1 MFD 200 V. Metalized Paper Condenser	CO.97
C417	25 MFD 25 V. Electrolytic Condenser	CO-59
C418	4 MFD 150 V. Electrolytic Condenser	CO-53
C419	. 01 MFD 300 V. Mica Condenser 5\%	CO-14
C420	. 01 MFD 400 V. Metalized Paper Condenser	CO.42
C421	4 MFD 450 V. Electrolytic Condenser	CO-54
C422	25 MFD 25 V. Electrolytic Condenser	CO-59
C423	. 005 MFD 500 V. Mica Condenser 5\%	CO-12
C424	. 0025 MFD 500 V. Mica Condenser 5\%	CO-8
C425	. 1 MFD 400 V. Metalized Paper Condenser	CO. 44
C426	. 5 MFD 400 V. Metalized Paper Condenser	CO. 46
C427	25 MFD 25 V. Electrolytic Condenser	CO-59
C428	2000 MFD 15 V. Electrolytic Condenser	CO-66
C429	20 MFD 450 V. Electrolytic Condenser	CO-57
C430	. 0004 MFD 500 V. Mica Condenser 5\%	CO-89
C431	. 0004 MFD 500 V. Mica Condenser 5\%	CO-89
C432	. 002 MFD 500 V. Mica Condenser 5\%	CO-7
C433	. 1 MFD 400 V . Metalized Paper Condenser	CO. 44
C434	. 0005 MFD 500 V. Mica Condenser 5\%	CO-5
C435	. 001 MFD Padder Condenser	CO.91
C436	. 0002 MFD 500 V. Mica Condenser	CO-90
C437	. 02 MFD 600 V. Tubular Condenser 5\%	CO-96
C438	. 015 MFD 200 V. Mica Condenser 5\%	CO-230
C439	. 004 MFD 500 V. Mica Condenser 5\%	CO-11
C440	. 004 MFD 500 V. Mica Condenser 5\%	CO-11

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLYI

MODELS 400A, 402 \& 403 SECTION IX Page 6

Reference Number	Description	Ampex Catalog Number
5601	20 MFD 450 V. Electrolytic Condenser	CO-57
6602	20 MFD 450 V . Electrolytic Condenser	CO-57
C603	30-30-20 MFD 475 V . Electrolytic Condenser	CO-244
C604	20 MFD 450 V . Electrolytic Condenser	CO-57
F401	1 Ampere "Slo-Blo" Type 3AG Fuse	FU-7
F402	2 Ampere Type 3AG Fuse	FU-2
J401S	Cannon XL-3-13 Chassis Connector	PL-58S
J402P	AN-3102-10S-3P Box Mount Connector	PL-59P
J403S	Phone Jack - Cpen Circuit	JA-3
J404P	Cannon XL-3-14 Chassis Connector	PL-4P
J405P	AN-3102-10S-4P Box Mount Connector	PL-61P
J406P	AN-3102-10S-2P Box Mount Connector	PL-62P
J407S	Jones S-304-A B Chassis Conne ctor	PL-56S
J408S	Jones S-308-A B Chassis Connector	PL-54S
J409P	Hubbell \#7466 Chassis Connector	PL-104P
J601P	Jones P-308-CCT-L Cable Connector	PL-103P
K401	Record Relay 3PDT 115 V . DC	RL-8
L401	20 MHR R.F. Choke	CH-8
L601	8 Hy .80 Ma , Filter Choke	1155
L602	8 Hy .80 Ma . Filter Choke	1155
M40 1	VU Meter	
NE401	Record Pilot Lamp	DL-4
R401	150,000 CHM 1 Watt Composition Resistor	RE-27
R402	100 OHM 1 Watt Composition Resistor 5%	RE-38
R403	100 OHM 1 Watt Composition Resistor 5\%	RE-38
R404	150,000 CHM 1 Watt Composition Resistor	RE-27
R405	1 Megohm 1 Watt Composition Resistor	RE-32
R 406	1,200 OHM 1 Watt Composition Resistor	RE-261
R407	330,000 OHM 1 Watt Composition Resistor	RE-30
R408	100,000 OHM 1 Watt Composition Resistor 1%	RE-205
R409	100,000 OHM Audio Taper Potentiometer	RE-227
R410	2,200 OHM 1 Watt Composition Resistor	RE-7
R411	47,000 OHM 1 Watt Composition Resistor	RE-22
R412	1 Megohm 1 Watt Composition Resistor 5\%	RE-48
R413	100, 000 OHM Audio Taper Potentiometer	RE-227
R414	100,000 OHM 1 Watt Composition Resistor	RE-26

Reference Number	Description	Ampex Catalog Number
R415	39,000 OHM 1 Watt Composition Resistor 5\%	RE-44
R416	2,200 OHM 1 Watt Composition Resistor	RE-7
R417	47,000 OHM 1 Watt Composition Pesistor	RE-22
R418	470,000 OHM 11 Watt Composition Resistor	RE-31
R419	2,200 OHM 1 Watt Composition Resistor	RE-7
R420	470 OHM 1 Watt Composition Resistor	RE-2
R421	22,000 OHM 2 Watt Composition Resistor	RE-171
R422	47,000 OHM 1 Watt Composition Resistor	RE-22
R423	1 Megohm 1 Watt Composition Resistor	RE-32
R 424	50,000 OHM Linear Taper Potentiometer	RE-226
R425	470,000 OHM 1 Watt Composition Resistor	RE-31
R 426	15,000 CHM 10 Watt Wire Wound Resistor	RE-92
R427	100,000 OHM 1 Watt Composition Resistor	RE-26
R428	1 Megohm 1 Watt Composition Resistor 1\%	RE-211
R429	330,000 OHM 1 Watt Somposition Resistor 1%	RE-209
R430	2,200 CHM 1 Watt Composition Resistor	RE-7
R431	1 Megohm 1 Natt Composition Resistor 1%	RE-211
R432	20, 000 CHM Audio Taper Potentiometer	RE-240
R433	22,000 OHM 2 Watt Composition Resistor	RE-171
R434	1 Megohm 1 Watt Composition Resistor	RE-32
R435	330,000 OHM 1 Watt Composition Resistor	RE-30
R 436	2,700 OHM 1 Watt Somposition Resistor	RE-8
R437	1 Megohm Audio Taper Potentiometer	RE-232
R438	560 OHM 1 Watt Composition Resistor	RE-3
R439	47,000 OHM 1 Watt Composition Resistor	RE-22
R 440	1 Megohm 1 Watt Composition Resistor	RE-32
R441	1 Megohin 1 Watt Composition Resistor	RE-32
R442	2,200 OHM 1 Watt Composition Resistor	RE-7
R443	560 OHM 1 Watt Composition Resistor	RE-3
R444	100 OHM 1 Watt Composition Resistor	RE-260
R445	10,000 OHM 2 Watt Composition Resistor	RE-168
R446	47,000 OHM 1 Watt Composition Resistor	RE-22
R447	47,000 OHM 1 Watt Composition Resistor	RE-22
R448	7 OHM 1 Watt Composition Resistor 1% (2-14 OHM in Parallel)	RE-257
R449	40,000 OHM Wire Wound Potentiometer	RE-278
R 450	500 CHM 10 Watt Wire Wound Resistor-Adjustable	RE-277
R451	3600 CHM 1 Watt Composition Resistor 1\%	RE-258
R452	100 OHM 1 Watt Composition Resistor	RE-260
R453	100 OHM 1 Watt Composition Resistor	RE-260
R 454	470,000 OHM 1 Watt Composition Resistor	RE-31
R 455	470 OHM 1 Watt Composition Resistor 5\%	RE-365
R 456	680,000 OHM 1 Watt Composition Resistor	RE-480
R457	2,000 OHM 10 Watt Wire Wound Resistor	RE-82

Reference Number	Description	Ampex Catalog Number
S401	Input Switch - 3P3T Selector Switch	SW-7
S402	Equalization Switch - 3P2T Selector Switch	SW-8
S403	Record Pushbutton SPST - Normally Open	SW-34
S404	Line Termination Switch - SPST Toggle	SW-9
S405	Meter and Output Switch - 3P4T Selector Switch	SW-13
S406	AC Power Switch - SPST Toggle	SW-9
SR601	Selenium Rectifier - Full Wave	SR-3
T401	Microphone Input Transformer	1153
T402	Output Transformer	1154
T403	Erase Transformer	1011
T601	Power Transformer	39.53
V401	12SJ7 Vacuum Tube	TU-11
V402	$12 \mathrm{SJ7}$ Vacuum Tube	TU-11
V403	12557 Vacuum Tube	TU-11
V404	6 C 5 or 6J5 Vacuum Tube	TU-3
V405	VR 150/0D3 Vacuum Tube	TU-2
V406	12SJ7 Vacuum Tube (Selected)	TU-12
V407	12SJ7 Vacuum Tube	TU-11
V408	6C5 or 6J5 Vacuum Tube	TU-3
V409	6SN7-GT Vacuum Tube	TU-13
V601	5Y3-G Vacuum Tube	TU-14
	AC Power Cable	2413
	Power Supply Cable	2435
	Octal Tube Socket	SO-8
	Turret Tube Socket	1208
	Fuse Extractor Post	FE-1
	Equalization and Meter Switch Knobs	KN-3
	Record and Playback Gain Knobs	KN-4
	Input Switch Knob	KN-8

FIG. 2

frequency in cycles per second

[^0]FIG 8

ELECTRONIC ASSEMBLY
TOP \& REAR VIEWS
MODELS 402 \& 403
AMPEX ELECTRIC CORPORATION
REDWOOD CITY, CALIFORNIA
FIG 9

FIG 10

APPENDIX D

AMPEX MODEL 381 SPKEDIOCK EQUIPMENT
INSTRUCTIONS

INSTRUCTION MANUAL

SECTION III. OPERATION

I. Record
II. Playback

SECTION IV. CIRCUIT DESCRIPTION

I. Control Track Generator
II. Playback Demodulator
III. 60 Cycle Amplifier

SECTION V. ALIGNMENT AND ADJUSTMENTS
I. Control Track Generator
II. Playback Demodulator
III. 60 Cycle Amplifier

SECTION VI. PARTS LIST

FIGURE 1: 60 CYCLE AMPLIFIER SCHEMATIC
FIGURE 2: PLAYBACK DEMODULATOR SCHEMATIC
FIGURE 3: CONTROL TRACK GENERATOR SCHEMATIC
FIGURE 4: INTERCONNECTING DIAGRAM
FIGURE 5: BLOCK DIAGRAM

SECTION I

GENERALDATA

FOR MODEL 381 SDEED LOCK EOUIPMENT

I. COMPONENTS

The Model 381 Speed Lock Equipment, for rack mounting, Catalog No. 2621-2, consists of the following components:

Item	Components	Catalog Number
1.	Control Track Generator, for rack mounting	$2189-1 *$
2.	Playback Demodulator, for rack mounting	$2190 *$
3.	Model 375 60 Cycle Amplifier, for rack mounting	841
4.	Power Cable - Control Track Generator	2620
5.	Power Cable - Playback Demodulator	2478
6.	Power Cable - 60 Cycle Amplifier	3429
7.	60 Cycle Amplifier Signal Cable	2500
8.	Control Track Modulation Cable	$2666-1$
9.	Control Track Mixing Cable	2651

The Control Track Generator can be supplied to mount in the console cabinet of Ampex Series 300 Recorders. In this case the catalog numbers change as indicated:

1.	Model 381 Speed Lock complete	$2621-1$
2.	Control Track Generator	2189
3.	Control Track Modulation Cable	2666

1I. GENERAL DESIGN CHARACTERISTICS

The Model 381 Speed Lock Equipment is primarily designed for telemetering applications to insure that data will be reproduced from tape at the same rate it was recorded. It is specifically designed to operate with Ampex Models 302, 307 and 500 Magnetic Tape Recorders in the recording of telemetering data supplied by the standard 7-1/2 percent deviated $F M / F M$ system. In this system the Speed Lock Equipment will compensate for DC errors due to power line frequency changes or tape dimensional changes produced by temperature, humidity, etc. With minor modifications it will operate with many of the other recorders designed for data recording.

[^1]Fundamentally, Speed Lock is accomplished by recording on the tape the output of the precision 60 Cycle Amplifier that supplies power to the capstan motor. On playback this frequency is reproduced and compared with the signal from the 60 Cycle Amplifier. The speed of the recorder is controlled so these frequencies are accurately matched, thereby insuring that the data reproduced is the same frequency as when recorded.

The Control Track Generator and the 60 Cycle Amplifier are required during the recording process to add the precision reference frequency to the tape. An 18. 24 KC* oscillator in the Control Track Generator is modulated by the 60 Cycle Amplifier output signal, which also drives the capstan motor. The resulting control track is mixed with the telemetering data through a resistance network. The combined signal is recorded on the tape.

The Playback Demodulator and the 60 Cycle Amplifier are required during the playback process to provide power to the capstan motor of the recorder, controlled in frequency to provide the proper tape speed. The output of the tape recorder is fed to the Playback Demodulator where the control track carrier is separated from the data and demodulated. The resulting 60 cycle signal is compared with the output of the Tuning Fork Oscillator in the 60 Cycle Amplifier to provide a variable frequency correction signal. This signal is amplified by the power amplifier in tne 60 Cycle Amplifier to drive the capstan motor of the tape recorder. Thus, any difference between the reproduced comparison frequency and the precision 60 cycle reference frequency results in a change of frequency to the recorder capstan motor to correct its speed in a manner to eliminate any difference. The correcting action is extremely smooth and accurate with no tendency to hunt or over-shoot.

III. GENERAL PERFORMANCE DATA

CORRECTION CHARACTERISTICS: After the Speed Lock Correction System has stabilized, the average frequency reproduced from the tape will be within. 02% of the original recorded frequency, providing there is no change in the precision reference frequency supplied by the 60 Cycle Amplifier Tuning Fork Oscillator. This oscillator has a stability of 5 parts per million per degree centigrade. The rate of correction is directly proportional to the error in capstan speed. At the start of reproduction this will produce a frequency error appreciably greater than $.02 \%$. This starting error can be limited to $.1 \%$ or less by following the operating procedure described in Section III-II.

DATA LIMITATIONS: Any data components equal to or greater than the control track level between 16.5 KC and 20.0 KC may cause the improper operation of the Speed Lock Equipment.

DATA FREQUENCY RESPONSE: $\pm 1 \mathrm{db} 0$ to 100,000 cycles.
*NOTE: Equipment with different control track frequencies is available on special order.

DATA NOISE LEVEL: Speed Lock will add no noise components to the data signal provided Research and Development Board recommended subcarrier frequencies are employed and the 22 KC channel is deviated only $7-1 / 2 \%$.

INPUT IMPEDANCE: The data input impedance is approximately 100 K unbalanced bridging and is designed to bridge any input from 0 to 10,000 ohms.

OUTPUT IMPEDANCE: The data output is unbalanced and will be the same impen dance as the output of the playback amplifier of the magnetic tape recorder as long as this impedance does not exceed 47,000 ohms.

CONTROL TRACK: 18. 24 KC carrier amplitude modulated by the 60 cycle precision reference frequency.

60 CYCLE OUTPUT: $110 \mathrm{~V} ., 65 \mathrm{Watts}$, variable frequency for driving the capstan motor of the magnetic tape recorder.
IV. POWER INPUT REQUIREME NTS

Control Track Generator: . 001 ampere at 390 V. DC) obtained from magnetic .15 ampere at $6.3 \mathrm{~V} . \mathrm{AC})$ tape recorder.

Playback Demodulator: 1.5 amperes at 115 V. 60 cycle
60 Cycle Amplifier: 2.5 amperes at 115 V. 60 cycle
V. PHYSICAL DATA

Controi Track Generator - for rack mounting:
Dimensions: Occupies $7^{\prime \prime}$ of rack space, $61 / 2^{\prime \prime}$ deep. Weight: 6 pouncs.

Control Track Generator for Console mounting:
Dimensions: $91 / 2^{\prime \prime}$ long $\times 5$ " wide $\times 1 / 2 "$ high. Weight: 5 pounds.

Playback Demodulator:
Dimensions: Occupies $14^{\prime \prime}$ of rack space, $10^{\prime \prime}$ deep. Weight: 45 pounds.

60 Cycle Amplifier:
Dimensions: Occupies $121 / 4^{\prime \prime}$ or rack space, $91 / 2 '$ deep. Weight: 60 pounds.

The following installation procedures apply to Ampex Series 300 Magnetic Tape Recorders.
I. INSTALLATION FOR RECORDING AND PLAYING BACK AT THE SAME LOCATION

1. Connect the Control Track Generator to the tape recorder as shown in Figure 4. Connect a 1.23 Volt RMS data input signal to Connector J1302S of the Control Track Mixing Cable. NOTE: There is a 4 db mixing loss in this cable. This will require increasing the gain in the record amplifier of Ampex Series 300 Tape Recorder to arrive at the recommended tape record level.
2. Connect the Playback Demodulator to the tape recorder and the 60 Cycle Amplifier as shown in Figure 4. 1.23 Volt RMS data output appears at the Demodulator Signal Output Connector J202P when the data input is 1.23 Volts and the tape recorder has been properly adjusted. See Tape Recorder Instruction Manual.
3. For Ampex Model 307 Recorders, connect the 60 Cycle Amplifier to the tape recorder as shown in Figure 4. Connect the Power Factor Correction Condenser across the output by strapping pin 7 to pin 5 on the Power Connector J2302P. See Figure 1. The power fuse on the tape recorder must be increased by 3 amperes to accommodate the additional load of the 60 Cycle Amplifier. For Model 3302 Recorders connect the 60 Cycle Amplifier Cable to the recorder as explained in Sub-section IV.

II. INSTAILATION FOR RECCRDING ONLY.

Connect the Coratrol Track Generator and the 60 Cycle Amplifier to the tape recorder as explained in Sub-section I above. The Playback Demodulator is not required during the recording process. Insert Dummy Plug 2414 in the Signal (In and Out) Connector J2304S of the 60 Cycle Amplifier in place of the catalog number 250060 Cycle Signal Cable.

III. INSTAI,LATION FOR PLAYBACK ONLY.

Connect the Playback Demodulator and the 60 Cycle Amplifier to the tape recorder as explained in Sub-section I. The Control Track Generator is not required during the playback process. The Record-Playback Switch on the Demodulator must be in the playback position.
IV. 60 CYCLE AMPLIFIER POWER CONNECTIONS WITH MODEI 302 RECORDER

On Ampex Model 302 Recorders the 60 Cycle Amplifier Power Connections are made at the Capstan Drive Motor Terminal Strip TS-501.
A. Connections for Model 302 Recorders, serial number 1 through 500:

1. Remove the strap between Terminals 4 and 5 on TS-501 and move the drive motor solenoid lead from Terminal 4 to Terminal 5,
2. Remove the male Connector J2402P from the Power Cable 3429 and connect to TS-501 as follows:

Black to Terminal 3. White and Brown to Terminal 1. Red to Terminal 5.
3. For recorders whose drive motors have been replaced with a Bodine Motor, it is necesaary to connect the Power Factor Correction Condenser across the 60 Cycle Amplifier output. To do this strap Pin 7 to Pin 5 on the 8 Pin Power Connector J2302P.
B. Connection for Model 302 Recorders, serial number 501 and up.

1. Remove the strap between Terminals 4 and 5 on TS-501.
2. Remove the male Connector J2402P from the Power Cable 3429 and connect to TS-501 as follows:

Black to Terminal 4. Brown and White to Terminal 1. Red to Terminal 5.
3. For recorders with a Bodine Drive Motor (Serial Numbers 600 and up) it is necessary to connect the Fower Factor Correction Condenser across the 60 Cycle Amplifier output. To do this, strap Pin 7 to Pin 5 on the 8 Pin Power Connector J2302P.

SECTION III

OPERATION

I. RECORD

After the Control Track Generator and 60 Cycle Amplifier have been connected to the tape recorder as explained in Section II, turn on the AC Power Switch of the tape recorder. The recorder supplies power to the Control Track Generator and the 60 Cycle Amplifier. (NOTE: On Model 302 Recorders, Serial 501 and up, the tape must be threaded before power is supplied to the 60 Cycle Amplifier.) Place the Amplifier-Power Line Switch S2301 on the 60 Cycle Amplifier in the Amplifier position. If the Playback Demodulator is connected in the system, set the Record-Playback Switch in the record position.

Start the tape and set the 60 Cycle Amplifier Voltage Adjustment Control R2311 for 110 Volts as read on the voltmeter. This adjustment should be made under load conditions only. Under no-load conditions the voltage will rise above 150 Volts and pin the meter. This is normal and will in no way damage the meter as the no-load voltage is for less than the overload rating of the meter. Once the voltage adjustment is set, it should not be necessary to change it unless the tape speed is changed or a different tape recorder is used.

The data input signal of 1.23 Volts RMS should be fed to the Mixing Cable. The control track should be adjusted to the recommended level as explained in Section V-1. The record system is now ready for operation. The tape recorder should be operated in the usual manner with the exception that the record amplifier gain should be set 4 db higher than normal to compensate for the 4 db loss in the Mixing Cable.

II. PLAYBACK

After the Playback Demodulator and 60 Cycle Amplifier have been connected to the Recorder as explained in Section II, turn on the AC Power Switch on both the Demodulator and the tape recorder. The Red Pilot Light A 102 on the Demodulator will light. Place the Amplifier-Power Line Switch S2301 of the 60 Cycle Amplifier in the amplifier position. Set the Record-Playback Switch on the Demodulator in the playback position. Adjust the 60 Cycle Amplifier output voltage as explained under RECORD.

The playback system is now ready for operation. The data output level will be the same level as the tape recorder output since there is no loss in the Demodulator. The Demodulator Green Control Track Pilot Light A101 indicates that the control signal is being received and will be lit when the system is in operation. The tape recorder should be operated in the usual manner.

At the start of reproduction the frequency error will be high until the correction system is stabilized. Should it be necessary to start with minimum error the following procedure should be observed:

1. Start the tape in the usual manner and play back approximately 15 seconds of the tape. This will stabilize the correction system.
2. Open the head housing gate on the recorder and rewind the tape.
3. Close the head housing gate and restart the tape. The starting error will be less than $.1 \%$ and will drop to $.02 \%$ within 5 seconds.

CIRCUIT DESCRIPTION

1. CONTROL TRACK GENERATOR

The purpose of the Control Track Generator is to add the precision 60 cycle reference frequency to the tape. It consists of a plate modulated oscillator V701 tuned to 18.24 KC by C701. The 110 V .60 cycle modulation signal enters at Connector J703P, passes through the modulation transformer T702 in series with the DC plate supply and voltage regulator NE701, which prevents too high a percentage of modulation. The 18.24 KC oscillator is thus amplitude modulated to produce the control track. The control track is adjusted in level by R703 and passes to the Control Track Signal Connector J702S. The plate and filament supply for the Control Track Generator are obtained from the Electronic Assembly of the magnetic tape recorder through Connector J701P.

II. PLAYBACK DEMODULATOR

The purpose of this unit is to demodulate the control track carrier, compare the resulting signal with the precision reference frequency, and supply a variable frequency correction signal to vary the speed of the tape recorder.

The Playback Demodulator consists of the following:

1. Demodulator and Amplifier which demodulates, limits, reshapes, and amplifies the control track recorded on the tape to produce the comparison frequency.
2. Power Amplifier which amplifies the precision 60 cycle reference frequenc y.
3. Variable Frequency Oscillator which produces a signal to vary the speed of the tape recorder.
4. Differential Motor Assembly which compares the comparison frequency with the precision reference frequency and controls the Variable Frequency Oscillator accordingly.

The combined data and control track signal enter the Playback Demodulator at the Signal Input Connector J201S and is fed to the Demodulator and Amplifier. The control track carrier is separated from the data by the Control Track Pass Filter which consists of a parallel resomant L-C filter in the grid circuit of a voltage amplifier, V201. The output of V201 is detected by diode V202 (1N34A) and the resulting comparison frequency is fed to a voltage amplifier, V203.

The comparison frequency then passes through two stages of limiting, V206 and V205 (6AC7's), thus assuring the proper control voltage for input variations of +20 db . The screen voltage of the second limiter, V205, is varied by 226 to change the stage gain, thus providing the Differential Motor Voltage Adjustment. The output of the second limiter passes to V206 (6L6) the grid circuit of which is tuned to 60 cycles by a parallel resonant tuned circuit. The output of V206 is fed to contact \#3 on relay K201 and to the coil of the relay through a selenium rectifier SR201. If the control track is not present, the relay is de-energized and a dummy load R231 is connected across V206. When the control track is present the 60 cycle output of V206 is rectified to energize the relay. This transfers the output of V206 from the dummy load to the Differential Motor B202 of the Differential Motor Assembly

The precision reference frequency from the 60 Cycle Amplifier Tuning Fork Oscillator enters the Power Amplifier section of the Playback Demodulator at the 60 Cycle Out Connector J203P. It is adjusted in level by the Reference Motor Voltage Control R244 and passes to a two stage voltage amplifier V210. The output of V210 is fed to the power stage V211, the grid circuit of which is tuned to 60 cycles by a parallel resonant tuned circuit L205 and C230. The output of V211 is fed through the coupling condenser C231 to contact \#1 on relay K201. When the relay is energized the output of V211 is transferred from Dummy Load R229 to the Reference Motor B201 of the Differential Motor Assembly.

The Differential Motor, B202, driven by the comparison frequency is mounted so that its stator is free to rotate. The Reference Motor, B201, driven from the precision reference frequency is stationary mounted with its shaft locked to the Differential Motor. If the two frequencies fed to these motors do not agree perfectly, the stator of one motor rotates with respect to the other and in so doing drives the Differential Potentiometer, R234. The Differential Potentiometer is located in the grid circuit of the Variable Frequency Oscillator, V208, and controls the frequency of the oscillator. The output of this oscillator is fed through a level control R241 to the Record Playback Switch S202. When this switch is in the playback position the variable frequency signal is transferred to the 60 Cycle Out Connector J203P. It is amplified by the 60 Cycle Amplifier to drive the capstan drive motor of the tape recorder. Thus any difference between the comparison frequency and the precision reference frequency results in a change of frequency to the magnetic recorder capstan motor to correct its speed in a manner to eliminate any difference.

III. 60 CYCLE AMPIIFIER

The purpose of this unit is to supply during both record and playback the 60 cycle precision reference frequency and the power to drive the capatan motor of the tape recorder.

The 60 Cycle Amplifier consists of a precision 60 Cycle Tuning Fork Cscillator and a Power Amplifier. The power supply for this unit is self contained and receives its $A C$ power through the control circuits of the tape recorder and the

Power Connector J2302P (Pins 1 and 4). V2310 and V2311 (5U4G's) provide the plate current and a selenium rectifier SR2301 provides the negative bias voltage for the output tubes V2306 and V2307 and the limiter tube V2303.

The Tuning Fork Oscillator consists of a two stage RC coupled amplifier V2301 and V2302 with a tuning fork feedback circuit from the plate of V2302 to the grid of V2301. The voltage at the grid of V2302 is limited in amplitude by two diodes V2303 (6 H 6). They are biased at $11 / 2$ volts to prevent excessive feedback voltages from overdriving the tuning fork. The precision 60 cycle output, appearing at pin 6 of J2304S, is fed to the Power Amplifier in the Playback Demodulator during playback and is fed directly to 60 Cycle Amplifier Power Amplifier during record.

The Power Amplifier of the 60 Cycle Amplifier consists of a two stage voltage amplifier, V2312, a driver stage, V2305, and a push-pull output stage V2306 and V2307. The Power Amplifier is fed from the Tuning Fork Oscillator during record and from the Variable Frequency Oscillator of the Playback Demodulator during playback. The signal enters at Pin 2 of Connector J2304S and is fed to the voltage amplifier V2312 (6SN7). The grid circuit of the second stage contains a parallel resonant tuned circuit tuned to 60 cycles, and a gain control, R2311, to adjust the 60 Cycle Amplifier output voltage. The output of V2312 is fed to a driver stage, V2305 (6F6) where negative feedback from the output transformer, T2302, is fed to the cathode. This in turn feeds the push-pull output stage, V2306, and V2307 (807's) through the drive transformer, T2301. The signal passes through the output transformer, T2302 to Power Connector J2302P (Pins 5 and 8). The Power Factor Correction Condenser, C2319, appears across Pins 7 and 8 of the Power Connector and can be strapped across the output, if required by the cap8 tan motor of the tape machine. (Recorders that require this correction are indicated in Section II, Installation.)

ALIGNMENT ANDADJUSTMENTS

The following alignment procedure has been performed at the factory prior to shipment and all controls locked by the shaft locks. No further adjustments should be necessary except as required by routine maintenance.

The following test equipment is required for complete alignment:

1. Audio Cscillator = - Range 20 to 20,000 c.p.s. Example, Hewlett-Packard 200-C.
2. Vacuum Tube Voltmeter - - Accurate to 20,000 cycles. Example, Hewlett-Packard 400-C.
3. Oscillos cope.
4. Accurate Frequency Standard or Frequency measuring equipment. Example, Berkeley Scientific Events Per Unit Time Meter \#554.
I. CONTROL TRACK GENERATOR. Refer to Figure 3.
5. CONTROL TRACK OSCILLATOR FREQUENCY. The adjustment of the control track frequency requires the use of a frequency source of 18,240 cycle +200 cycles. This is necessary to assure the interchangeability of Speed Lock recordings. Calibrate an audio oscillator to 18.24 KC with an Events Per Unit Time Meter or any accurate frequency measuring device. Connect this calibrated frequency to the horizontal input of the oscilloscope. Connect the Control Track Signal Output J702S to the vertical input of the oscilloscope. Adjust the oscilloscope controls to show a Lissajous pattern. Adjust the Control Track Frequency Control C701 to provide a 1 to 1 frequency ratio.
6. CONTROL TRACK LEVEL. The Control Track Level Control R703 has been factory adjusted to provide 1.23 Volts RMS at the Control Track Signal Outpui J702S. This will produce the recommended control track level of . 245 Volts RMS at the input of the record amplifier of the tape recorder since there is a 14 db control track signal loss in the Mixing Cable. This recommended level applies only to an Ampex Model 307 Recorder with a Meter Panel set for 10 db attenuation. It should be noted that the data level and control track level are the same at the input of the tape recorder. Refer to Figure 5.

> Line Input Level Lose in Meter Panel with Record Control set at 10 Loss in Mixing Cable Record Amplifier Input Level

$-4 \mathrm{dbm}(1.23 \mathrm{~V})$	$44 \mathrm{dbm}(1.23 \mathrm{~V})$
-10 db	---
-4 db	-14 db
$-10 \mathrm{dbm}(.245 \mathrm{~V})$	$-10 \mathrm{dbm}(.245 \mathrm{~V})$

When the tape recorder is used without a meter panel the data input signal to the record amplifier will be $0 \mathrm{dbm}(.774 \mathrm{~V})$. The control track signal level at the input to the record should also be $0 \mathrm{dbm}(.774 \mathrm{~V})$. The Level Control should therefore be readjusted to provide $\$ 14 \mathrm{dbm}(3,88 \mathrm{~V})$ at the Control Track Signal Output J702S.

These input levels will produce the recommended tape operating level (point of 1% harmonic distortion) when the record amplifier of the tape recorder is set for an additional 4 db gain as described in Section II-I. Should the recommended control track level cause interference in the telemetering system, it can be reduced up to 10 db without affecting the performance of Speed Lock.

II. PLAYBACK DEMODULATOR. Refer to Figure 2.

1. CONTROL TRACK PASS FILTER ADJUSTMENT. Connect a 1 Volt source of 18.24 KC to the Demodulator Input Connector J201S. Connect a vacuum tube voltmeter to the plate of Diode V202 (located on the turret of V201). Adjust the Pass Filter Control C202 for maximum output as read by the voltmeter.
2. DIFFERENTIAL MOTOR VOLTAGE ADJUSTMENT. Connect a source of control track signal, such as an aligned Control Track Generator or a tape recorded from it, to the Demodulator Input J201S. Connect the vacuum tube voltmeter to Terminals 5 and 6 of the Differential Assembly Terminal Strip TS201. (Terminals read from left to right when chassis lettering is right side up.) Adjust the Differential Motor Voltage Control R226 to provide 110 Volts as read on the meter.
3. REFERENCE MOTOR VOLTAGE ADJUSTMENT. It is necessary to connect the 60 Cycle Amplifier to the tape recorder and Demodulator before this adjustment can be made. Connect a voltmeter across Terminale 1 and 2 of the Differential Assembly Terminal Strip TS201. (Terminals read from left to right when chassis lettering is right side up.) With the 60 Cycle Amplifier turned on, adjust the Reference Motor Voltage Control R244 to provide 110 V. as read by the voltmeter.
4. DEMODULATOR VARIABLE FREQUENCY OSCILLATOR ADJUSTMENT. Remove any input signal from the Demodulator. Connect

Terminal C and B of the 60 Cycle Output Connector J203P to the horizontal input of the oscilloscope. Set the Demodulator Record. Playback Switch 5202 in the playback position. Connect the AC power line frequency to the vertical input of the oscilloscope. Turn the Demodulator on and adjust the oscilloscope controls to show a Lissan jous pattern. Position the Differential Motor Assembly by hand to center the Differential Potentiometer R234. Adjust the Demodulator Variable Frequency Oscillator Control R232 to provide a 1 to 1 frequency ratio as determined by the Lissajous pattern.
5. VARIABLE FREQUENCY OSCILLATOR VOLTAGE ADJUSTMENT. It is necessary to connect the 60 Cycle Amplifier to the tape recorder and Demodulator before this adjustment can be made. With the Demodulator Playback-Record Switch S202 in the record position, adjust the 60 Cycle Amplifier output voltage to 110 V . as explained in Section III-I. This adjustment should be made under load conditions only. Reset the Demodulator RecordmPlayback Switch to the playback position. Adjust the Oscillator Voltage Control R241 to provide 110 V. to the capstan motor as read on the 60 Cycle Amplifier Voltmeter.
III. 60 CYCLE AMPLIFIER. Refer to Figure 1.

1. OUTPUT TUBE BLAS ADJUSTMENT. The bias on the 807 output tubes V2306 and V2307 should be adjusted to - $\mathbf{3 0}$ Volts by an adjustable tap on Resistor R2322 (located underneath chassis).
2. TUNING FORK OSCILLATOR Level. The Tuning Fork Oscillator level is determined by the bias on the Diode Limiter V2303. Con. nect a vacuum tube voltmeter to Pin 5 of V2303 and chassis ground. Adjust the appropriate tap on Resistor R2322 to provide -1 $1 / 2$ Volts bias.

Schematic		Ampex
Reference	Cescription	Catalog
Number	Dumber	

I. CONTROL TRACK GENERATOR - Catalog \#2189 or \#2189-1

C701
C702
C703
C704
C705
C706
C707
J701P
J702S
J703P
NE701
R701
R702
R703
R704
R705
R706
T701
T702
v701

A201
A202

B201
. 0001 MFD Variable Air Trimmer Condenser
CO-124
. 0006 MFD 1000 V. Mica Condenser 2%
.002 MFD 500 V. Mica Condenser
. 005 MFD 500 V. Tubular Condenser
.01 MFD 600 V. Tubular Condenser
10 MFD 450 V. Electrolytic Condenser
.01 MFD 600 V . Tubular Condenser
Power Connector - Jones P-310-AB
Control Track Output Connector - Cannon XL-4-13
Modulation Connector - Jones P-308-AB
Neon Voltage Regulator
$\begin{array}{ll}\text { 10,000 ohm 1 Watt Composition Resistor } & \text { RE-15 } \\ 100,000 \text { ohm 1 Watt Composition Resistor } & \text { RE-26 } \\ 200 \text { ohm Wire Wound Potentiometer } & \text { RE-280 } \\ 10,000 \text { ohm 1 Watt Composition Resistor } & \text { RE-15 } \\ 47,000 \text { ohm 1 Watt Composition Resistor } & \text { RE-22 } \\ 4,700 \text { ohm 1 Watt Composition Resistor } & \text { RE-11 }\end{array}$
Oscillator Transformer
2596
Modulation Transformer
2660
6C4 Vacuum Tube
7 Pin Miniature Tube Shield
TU-26
7 Pin Miniature Tube Shield Base SD-3
II. PLAYBACK DEMODULATOR - Catalog \#2190

120 V. 6 Watt Lamp - Candelabra Screw	LA-6
Green Pilot Lamp Base	DL-8
120 V. 6 Watt Lamp - Candelabra Screw	LA-6
Red Pilot Lamp Base	DL-7

Reference Motor
See Note 1 - Page 4
Differential Motor

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!

C	Schematic Reference Number	Description	Ampex Catalog Number
	K201	3 PDT 115 V. DC Relay	RL-8
	1201	125 MH Torroidal Inductance	1644
	1202	2 Henry Torroidal Inductance	$\mathrm{CH}-7$
	L203	14 Henry Choke	CH-11
	L204	12 Henry Choke	3479
	L205	2 Henry Torroidal Inductance	CH-7
	1206	14 Henry Choke	CH-11
	R201	470,000 ohm 1 Watt Composition Resistor	RE-31
	R202	47,000 ohm 1 Watt Composition Resistor	RE-22
	R203	10,000 ohm 10 Natt Nire Wound Resistor	RE-90
	R204	25,000 ohm !' Watt Wire Wound Resistor	RE-95
	R205	100,000 ohm 1 Watt Composition Resistor	RE-26
	R206	220 ohmi 1 Watt Tonsposition Resistor	RE-1
	R207	68,000 ohm 1 Watt Composition Resistor	RE-24
	R208	68,000 ohm $1 . V a t t$ Composition Resistor	RE-24
	R210	1200 ohm 1 Watt Composition Resistor	RE-261
	R211	47, 000 ohm 1 Watt Composition Resistor	RE-22
$($	R212	15,000 ohm 1 Watt Composition Resistor	RE-16
	R213	100,000 ohnı 1 Natt Composition Resistor	RE-26
	R214	220,000 ohm 1 Vati Composition Resistor	RE-28
	R215	220 ohm 1 Watt Compusition Resistor	RE-1
	R216	50,000 ohm 10 Watt Wire Nound Resistor	RE-99
	R217	10,000 ohm 1 Watt Composition Resistcr	RE-15
	R218	100, 000 ohm 1 Watt Composition Resistor	RE-26
	R219	2,000 ohm 10 Watt Wire Wound Resistor	RE-82
	R220	1 Megohm 1 Vatt Composition Resistor	RE-32
	R221	1 Megohm 1 Watt Composition Resistor	RE-32
	R222	220 ohm 1 Watt Zomposition Resistor	RE-1
	R223	25,000 whm ll Watt Wiat Wound Resistor	RE-95
	R224	10,000 ohm 10 Watt Wire Wound Resistor	RE-90
	R225	10,000 ohm 1 Watt Composition Resistor	RE-15
	R226	50,000 ohm 4 Watt Wire Nound Potentiometer	RE-291
	R227	300 ohm 10 Watt Wịe Wound Resistor	RE-70
	R228	100,000 ohm 1 Natt Composition Resistor	RE-26
	R229	3500 ohm 10 Watt Wire Wound Resistor	RE-326
	R230	470 ohm 1 Watt Composition Resistor	RE-2
	R231	7,000 ohm 10 Watt Wire Wound Resistor	RE-284
	R232	20,000 ohm Carbon Potentiometer	RE-240
	R233	1,000 ohm 1 Watt Composition Resistor.	RE-5
-	R234	40,000 ohm 4 Watt Wire Wound Potentiometer	2269

NOTE: ORDER DARTS BY. AMPEX CATALCG NUMBER ONLYI

MODEL 381 SECTION VI Page 3

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!

Schematic Reference Number	Description	Ampex Catalog Number
V2308	OD3/VR150 Vacuum Tube	TU-2
V2309	OD3/VR150 Vacuum Tube	TU-2
V2310	5USG Vacuum Tube	TU-1
V2311	5U4G Vacuum Tube	TU-1
V2312	6SN7 Vacuum Tube	TU-13
	Voltage Control Knob	KN-1

IV. MISCELLANEOUS

Cannon XL-3-12 Male Cable Connector	PL-33P
Cannon XL-3-11 Female Cable Connector	PL-1S
Octal Tube Socket $15 / 16$ Mounting	SO-13
Octal Tube Socket $11 / 2$ Mounting	SO-8
5 Prong Tube Socket	SO-2
Octal Turret Tube Socket	1208
Condenser Socket	SO-9
Fuse Extractor Post	FE-1
Shaft Lock	SM-1

NOTE: ORDER PARTS BY AMPEX CATALOG NUMEER ONLYI

C

FIG. 3
2-8-32

APPRNDIX E

AMFEX MONE 375 FRECISION 60 HICL CAPSTAN MOTOR SUPPI

INSTRUCTIONS

APPENDIX F

EAGLE SIONAL CORP. MULTIFLEX TIMIER

INETRUCTIONS

INSTRUCTION MANUAL

FOR
MODEL 37560 CYCLE AMPLIFIER
The Ampex Model 375 Amplifier is a 60 cycle oscillator and power amplifier designed to supply constant frequency from unstable power sources. It will deliver 70 watts of 60 cycle power when fed from a power source having a frequency from 50 to 400 cycles.

The Model 375 is composed of two component sections, a precision tuning fork controlled 60 cycle oscillator and a power amplifier, either of which may be used independently. The tuning fork oscillator supplies a 7 volt 60 cycle output (500,000 ohm unbalanced) with a frequency accuracy of 5 parts per million per degree centigrade.

The power amplifier will maintain constant output frequency over a range from 50 to 75 cycles when fed from an external signal generator. The frequency range may be extended to 400 cycles by changing one capacitor. See Operation.

SPECIFICATIONS

Output Power: 70 Watts
Output Frequency: 60 c. p.s. when using tuning fork oscillator 50 to $400 \mathrm{c} . \mathrm{p} . \mathrm{s}$. when using external signal generator.
Output Voltage: 0 to 135 volts
Input Power Source: 117 volts, 50 to 400 c. p. s., 275 watts.
Dimensions: Built to mount on standard 19 inch relay rack. Occupies 12-1/4 inches of rack space.
Weight: 60 pounds.
Front Panel Controls:

1. Output voltage control R2311
2. Output voltmeter M2301
3. Output transfer switch, S2301, which allows the load to be fed either through the amplifier or directly from the power line.
4. Indicator lamp, A2301, indicates when power is supplied to the amplifier.
5. Stroboscope supply socket, J2303S, which provides a source of power for a two watt neon lamp.
6. Power Amplifier input jack, J2301, which allows connecting an external signal source to the power amplifier.
7. Fuses for protection of the amplifier.

INSTALLATION

Both power input and power output connections of the Model 375 Amplifier are made with a single eight pin connector J2302P. Pins 1 and 4 are the power line input connections, and Pins 5 and 8 are the amplifier output connections. A four \#18 wire cable is required between the 60 cycle amplifier and the tape recorder.

The six pin receptacle J 2304 S contains the output connections of the tuning fork circuit and the input connections to the power amplifier. Dummy plug \#2414 should be inserted in this receptacle except when the Model 375 is used with Model 381 Speed Lock Equipment.

INSTALLATION WITH MODEL 300, 301 and 302 RECORDERS
Input and output connections are made to terminal strip TS-501 mounted on the capstan motor support bracket underneath the Model 300 top plate. In order to accommodate the additional load the two 5 ampere line fuses on the Model 300 Recorder should be increased to 8 amperes.

CONNECTIONS FOR MODEL 300 RECORDER-Serial 1 thru 500.
(1) Remove the strap between Terminals 4 and 5 on TS-501 and move the drive motor solenoid lead from Terminal 4 to Term. inal 5 .
(2) Pin 1 of the Model 375 connects to Terminal 3 of TS-501.
(3) Pins 4 and 5 of the Model 375 connect through separate wires to Terminal 1 of TS-501. It is necessary to run separate leads as the common impedance of a single lead will cause unnecessary hunting of the capstan drive motor.
(4) Pin 8 of the Model 375 connects to Terminal 5 of TS-501.

CONNECTIONS FOR MODEL 300 RECORDERS - Serial 501 and up.
(1) Remove the strap between Terminals 4 and 5 on TS-501.
(2) Pin 1 of the Model 375 connects to Terminal 4 of TS-501.
(3) Pins 4 and 5 of the Model 375 connect through separate wires to Terminal 1 of TS-501. It is necessary to run separate leads as the common impedance of a single lead will cause unnecessary hunting of the capstan drive motor.
(4) Pin 8 of the Model 375 connects to Terminal 5 of TS.501.
(5) For Recorders using a Bodine Drive Motor (Serial Numbers (600 and up) it is necessary to connect the power factor correction condenser C2319 across the Model 375 output. To do this strap Pin 7 to Pin 5 on the eight pin power connector J2302 D.
(6) A slight time interval from 8 to 15 seconds must be observed while the Model 375 warms up.

INSTALLATION WITH MODEL 306 and 307 RECORDERS
Connections from the Model 375 are made at connector J-805S located
on the connector panel underneath the top plate. A four \#18 wire cable is required, connecting terminals $1,4,5$, and 8 of the two plugs. In order to accommodate the additional load the two 5 ampere line fuses on the 307 must be increased to 8 amperes. Strap pin 7 to pin 5 on power connector J2302P to connect the power factor correction condenser across the output.

OPERATION

After making the necessary connections, place the output transfer switch in the Amplifier position. This supplies power to the amplifier and connects the load to the amplifier. Adjust the output voltage control for the desired voltage as read on the voltmeter. When supplying power to Ampex Tape Recorders, it is recommended that the voltage be adjusted to 110 volts. Higher voltages will produce excess current drain in the amplifier, decreasing the life of the 807 vacuum tubes. NOTE: The voltage should be adjusted under load conditions only. If the load is removed, the voltage will rise above 150 volts and pin the meter. This will in no way damage the meter as no load voltage is far less than the overload rating of the meter.

To extend the frequency range of the power amplifier above 75 cycles, it is necessary to reduce the value of the Driver Transformer Tuning Condenser, C2313. To obtain optimum results at 400 cycles, remove the condenser entirely.

ADJUSTMENTS

The following adjustments have been made at the factory prior to shipment. Further adjustments are unnecessary except as required in routine maintenance.

1. OUTPUT TUBE BIAS ADJUSTMENT. The bias on the 807 output tubes V2306 and V2307 should be adjusted to - 30 Volts by an adjustable tap on Resistor R2322 (located underneath chassis).
2. TUNING FORK OSCILLATOR LEVEL. The Tuning Fork Oscillator level is determined by the bias on the Diode Limiter V2303. Connect a vacuum tube voltmeter to Pin 5 of V2303 and chassis ground. Adjust the appropriate tap on Resistor R2322 to provide -1 1/2 Volts bias.

TO WIRIN \mathcal{A} HARNESS

1. Disconnect the two wires from the swinger of the motor speed switch S-302. This switch has two swingers, but only one has two wires connected to it. Connect these two wires to a line leading to Pin 1 of the Model 375 input-output connector J2302P.
2. Connect Pin 8 of the Model 375 to this swinger.
3. Refer to Fig. 3 of the 400 or 401 Instruction Book. Connect Pins 4 and 5 of the Model 375 through separate leads to the top plate power switch S301. There are two terminals on S301, the correct one being the terminal that connects to plug S-305P where the cable to the electronics connects. This terminal can be identified by tracing continuity from J-305P to the switch with the switch in the "off" position.
4. It is necessary to increase the size of the top plate fuse F-102 to 5 amperes.
5. The power factor correction capacitor, C-2319, in the 60 cycle amplifier is not necessary with the Model 400 or 401.
6. The output voltage of the 60 cycle amplifier should be adjusted to 110 volts. Setting up higher voltages will produce excessive current drain in the amplifier.

Schematic Reference Number	Description	Ampex Catalog Number
III. 60 CYCLE AMPLIFIER - Catalog \#841		
A2301	6-8 V. Panel Lamp - Bayonet Base	
	Red Pilot Lamp Base	DL-3
C2301	. 5 MFD 600 V . Tubular Condenser	CO-36
C2302	1.0 MFD 400 V . Tubular Condenser	CO-37
C2303	50 MFD 25 V. Electrolytic Condenser	CO-60
C2304	. 1 MFD 600 V . Tubular Condenser	CO. 33
C2305	10 MFD 450 V . Electrolytic Condenser	CO-55
C2306	. 1 MFD 600 V. Tubular Condenser	CO-33
C2307	50 MFD 25 V. Electrolytic Condenser	CO-60
C2308	1.0 MFD 400 V . Tubular Condenser	CO-37
C2309	3.75 MFD 330 V . AC Condenser	CO-84
C2311	10 MFD 450 V . Electrolytic Condenser	CO. 55
C2312	. 1 MFD 600 V. Tubular Condenser	CO-33
C2313	. 25 MFD 600 V. Tubular Condenser	CO-35
C2314	10 MFD 450 V . Electrolytic Condenser.	CO-55
C2315	50 MFD 25 V. Electrolytic Condenser	CO.60
C2316	50 MFD 25 V. Electrolytic Condenser	CO.60
C2317	100 MFD 50 V . Electrolytic Condenser	CO.63
C2318	15 MFD 1,000 V. Oil Condenser	CO-51
C2319	7.5 MFD 330 V. AC Condenser	CO-85
C2320	. 05 MFD 600 V . Tubular Condenser	CO-32
F2301	3.2 Ampere Slo-Blo Fuse	FU-8
J2301S	Input Jack - Closed Circuit	JA-1
J2302P	Power Connector - Jones P-308-AB	PL.8P
J2303S	Strobo Connector - Jones S-308-AB	PL-75S
J2304S	Signal Connector - Jones S-306-AB	PL-55S
L2301	2 Henry Torroidal Inductance	CH-7
L2302	S winging Filter Choke - 5 to 25 Henry	CH-18
M2301	AC Voltmeter	ME-1
R2301	2200 ohm 1 Watt Composition Resistor	RE-7
R2302	1 Megohm 1 Watt Composition Resistor	RE-32
R2303	100,000 ohm 1 Watt Composition Resistor	RE-26
R2304	10,000 ohm 1 Watt Composition Resistor	RE-15
R2305	1 Megohm 1 Watt Composition Resistor	RE-32
R2306	680 ohm 1 Watt Composition Resistor	RE-36
R2307	25,000 ohm 10 Watt Wire Wound Resistor	RE-95

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!

NOTE: ORDER PARTS BY AMPEX CATALOG NUMBER ONLY!

-	Reference Number	Description	Ampex Catalog Number
\cdots	V2308	OD3/VR150 Vacuum Tube	TU-2
	V2309	OD3/VR150 Vacuum Tube	TU-2
	V2310	5U4G Vacuum Tube	TU-1
	V2311	5U4G Vacuum Tube	TU-1
	V2312	6SN7 Vacuum Tube	TU-13
		Voltage Control Knob	KN-1

Terminal, arrangemant for 4, 5, 6 and 7 confact Multifiex Timers.

Each timer contact hus a linear calibrated scale $1 \% / 1$ long. It is calibrated in increments corresponding to the gearing in the timer.

Each contact has an "ON" or "CLOSE" indicator and an "OFF" or "OPEN" indicator. The settings of these indicators along the linear scale determine the point at which the contact closes or opens. Each contact can be set to close and open once during the timing eycle.

MINIMUM INITIAL SETTINGS

The indicators can be set at the " 0 " end of the scale when the contact operation is to occur immediately at the start of the cycle. Otherwise, the setting should not be made lass than $1 / 2$ of a linear scale division ($1 / 64$ ") away from " 0 ". This is to prevent the contact operation from occurring immediately.

MINIMUM INTERVAL BETWEEN CONTACT OPERATIONS

It is not practical to attempt setting two contact operations on the Multiflex timer so that they will occur simultaneously. One operation is always apt to occur ahead or behind the other.

MINIMUM "ON" TIME

The "OFF" indicator should always be set a minimum of $1 / 4$ of a linear scale division later than the "ON" interval to insure obtaining a positive contact closure.

OMITTING "ON" OPERATION

In instances where it is desired to prevent a contact from closing during a cycle of operation without disconnecting the wire to the contact, adjust the "OFF" indicator ahead or above the "ON" indicator on timing scale.

VERNIER ADJUSTMENTS

Timers with vernier knobs on the indicators provide an eosier and more accurate method of adjusting time settings. One turn of the vernier knob advances the indicator one linear scale division. One calibration on the vernier knob is equal to 0.1 of one linear scale division.

accuracy

Timing accuracy between settings of contact operations depends primarily upon accuracy with which indicators are adjusted and set.

Repeated operations with a given indicator setting will be extremely consistent since the Multiflex is synchronous motor driven.

A maximum of 1% of full scale may be caused when starting the timer. This is due to (a) backlash in gearing; (b) engagement of clutch; (c) motor acceleration. This error, at the start of the cycle, will affect the timing of those contacts set to close at "0". The errors mentioned in this paragraph do not apply to contact closure intervals when the "ON" and "Off" intervals are set beyond $1 / 2$ scale division from " 0 ". In this latter case, timing should be consistent to within $1 / 4$ of 1% of full scale on repeated operations when the indicators are not reset between operations.

MAINTENANCE

The Multiflex Timer is carefully adjusted at the factory. No further adjustment or maintenance is ordinarily required during its service. Should the timer fail in operation the following check list is furnished to aid in determining the malfunction.

CAUTION: It is not advisable to dismantle timers in the fiuld without a thorough knowledge of their movement and the adjustments involved. Return all timers to EAGLE SIGNAL CORPORATION, Moline, Illinois, for repair and overhaul.

EAGLE SIGNAL CORPORATION

1. Mofor Fails to Operate-Connect proper voltage to timer of terminals MA and MB. If moter foils to run, replecement is required.
2. Clutch solonoid Feils to Operefo-Connect proper voltage to terminals CA and CE. Clutch solenoid ormoture should close. If it does not check coil for open circuit and/or free movement of all linkage.
3. Timer Feils to Reset When Cluch Seloneid Is Re-energised-
a. Sliding plate must reset freely. Pull plate down ogainst its bottom stop by hand. It should "snap bock" with sufficient force when released. If if does not, refer to instructions of Fig. 9, Page 4 for correcting.
b. Armature return spring should pull armoture down against ifs stop and the chutch must be open.
c. Contact trip levers must clear sliding plate by opproximately .010" to .015". (5ee Fig. 5).
4. Confacts Fall to Clece-
a. Confocts should assume position shown in Figs. 5, 6 and 7 durine cycle of operation.
b. In reset position (fig. 5) bakelite fingers F should ride on trip bars 0 . When Hfted away from frip bars G by hand, they should "snap bock" with considerable force. Likewise, when in the confact cloaed position (Fig. 6), the top conloct should "snop back" to ride on the bottom contact when liffed by hand and released. There should be epproximotoly 2 ounces pressure on the contacts when closed. If confact fingers are found to hove inodequate pressure, the centect lued wires may be restreining the free movement of the fingers. Reposition wires so they allow free movement.
c. If current does not pass through eonfocts when dosed with proper pressure, serepe eentact surfaces claon with knife. Confacts are coin silver which do not require cleoning under ordinary condifions.
5. Timing Dees Net Agree Whit Inclicuter Sefting-
a. On fimers with vernier knobs, when vernier knob is set at "0" itming, lineor indleaker muat colncide with "0" colltoration on lineor scale. This can be odjusted by loesening its screw and shifting indleator up or down as reavired.
b. Turn vernier knob 4 or 5 divisions down the scale.
c. Hold armature closed by hand so that trip bars ride on sliding plote. The plote should be reset eqeinst its tep atop.
d. Turn vernier knob bock roward " 0 ". Trip bever should drop off edge of piate 1 to $1 / 2$ vernive scele divisiens befere " 0 ". (The 1 to $11 / 2$ division setting from " O " is to compensafe for doloy errer in steoting plate of beginning of thuing cyele). If eorrection is required, furn nut D (Fig. 8) to edvence or reford trip ber σ in relation to fiowe sefting.
-. On timers with thumb scrow odivitments in place of verniors, set indieater of $1 / 4$ of a division from " 0 ", ond close armature by hond. Trip ber should inst drep off edge of plafe. Adjust mut D If necessery.

LUBRICATION

Lubrication is mot ordinerily required. If the themer is removed for serviding, a drop of Woht grode instrument oll can be ploced on oech bearling.
The synchronous motors have a seated in supply of hubrication which should last saveral yoers depending upon the servico. On timers hoving motors with the ex. fernal coll and forged bross geor housing, the serew in the side of the geor housing may be removed to repien. ish the oil supply. Inioct two adble centimetors of all obrained from EAOLE SIGNAL CORPORATION and reploce serow. Mofors with oncloned colls cemmot bo reoiled.

Do nat hubricate the silding plate ner its chanmels.

Pioure 8
EAGLE SIGNAL
CORPORATION
17.

Time Seales

Motor hers an aecemory 1-6 reducor.

Tollo 1

SPECIAL INSTRUCTIONS

Chancinc oear ratio

The two epers on right side of timer can be changed to provide diffarant time ranges in accordance with the chert designoted as Table 1. Use a multiplier to make time seale read in seconds or minutes after changing the gears.

EXAMPLE: Ascume the thmer hes a 10 minute scale. The new gear ratio gives a $\mathbf{3 0}$ minute timing cycle. The multiplier will then be 3.
Whan the use of a multiplier is not satisfactory, now lineor scales may be purchased corresponding to the now georing. When instalied, this will necessitate rechecking the fitmer as exploined in Check Ltst, Item 5.

COMECTION FOR FAILUEE OF PLATE TO RESET .

1. The side plates containing the channels in which the plate E, Fig. B, slides may have been shifiod by rough honatilag caviing the plate to bind. When it is in ths tep position, you should be able to shift it laterolity is Frou thousandths of an inch if it hes aufficient side cleorames. Pull the plote to its bottom position and check for side cloarance again. If it is figho in atther postion, locoen slde plate mounting serews in bottom plate. Top side plate outward fightly and refightien serows.
2. The georing or the sliding ctutch sloeve (on L.H. Clutch Disc) may become dirty so thet thay do not rotate froely.
 beck and forth by hand. koeil with a drop of light grode instrument oil on each ond of shovo. Cloon the gearing with a bruch but do mot ell.
3. If the stiting plate channets in the side plates are dirty, cleon by removing the aliding plate.

To remove sliding plate, relocse stop scrow from the end of the plate channel in the 'right side platu. Romove aliding plate by pulting it eut of the chownols. Cloan the plate and the channols in the side platos using cenberwititivechloride and a stiff bribtiod brush.

To replace plato, follow inatructions in Fig. 9.

EAGLE SIGNAI CORPORATION

[^0]: ELECTRONIC ASSEMBLY
 AMPEX ELECTRIC CORPORATION
 REDWOOD CITY, CALIFORNIA

[^1]: *NOTE: Equipment with different control track frequencies is available on special order.

